Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 010305    DOI: 10.1088/1674-1056/ade1c4
GENERAL Prev   Next  

Superadiabatic stimulated Raman adiabatic passage between dressed states

Fangzhou Jin(金芳洲)1,†, Ao Wang(王奥)1, Yunlan Ji(季云兰)2, Hui Zhou(周辉)2,‡, and Jianpei Geng(耿建培)2,§
1 Department of Fundamental Subjects, Wuchang Shouyi University, Wuhan 430064, China;
2 School of Physics, Hefei University of Technology, Hefei 230009, China
Abstract  Stimulated Raman adiabatic passage (STIRAP) is a widely used technique for efficient population transfer between quantum states. However, the adiabatic nature of STIRAP requires slow evolution, leading to long operation times, which limits its practical applications. The superadiabatic method has been introduced to accelerate the STIRAP process, but it often necessitates additional couplings between the initial and target states, which may not be available in the original Hamiltonian. In this work, we present a novel approach to implement superadiabatic STIRAP (sa-STIRAP) between dressed states in a three-level quantum system. By modulating the amplitude and phase of the original driving fields, the initial and target states in dressed-state space can be effectively coupled. This approach provides a practical means of realizing sa-STIRAP in experimental setups, making it convenient to accelerate adiabatic quantum state transfer.
Keywords:  superadiabatic      stimulated Raman adiabatic passage      quantum control      shortucts to adiabaticity  
Received:  17 April 2025      Revised:  26 May 2025      Accepted manuscript online:  06 June 2025
PACS:  03.67.-a (Quantum information)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  42.50.-p (Quantum optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12104282 and 12305014) and the Fundamental Research Funds for the Central Universities of China (Grant No. JZ2024HGTB0253).
Corresponding Authors:  Fangzhou Jin, Hui Zhou, Jianpei Geng     E-mail:  fzjin@wsyu.edu.cn;zhouhui9240@163.com;jianpei.geng@hfut.edu.cn

Cite this article: 

Fangzhou Jin(金芳洲), Ao Wang(王奥), Yunlan Ji(季云兰), Hui Zhou(周辉), and Jianpei Geng(耿建培) Superadiabatic stimulated Raman adiabatic passage between dressed states 2026 Chin. Phys. B 35 010305

[1] Gaubatz U, Rudecki P, Schiemann S and Bergmann K 1990 J. Chem. Phys. 92 5363
[2] Bergmann K, Theuer H and Shore B W 1998 Rev. Mod. Phys. 70 1003
[3] Vitanov N V, Rangelov A A, Shore B W and Bergmann K 2017 Rev. Mod. Phys. 89 015006
[4] Vitanov N V, Halfmann T, Shore BWand Bergmann K 2001 Ann. Rev. Phys. Chem. 52 763
[5] Král P, Thanopulos I and Shapiro M 2007 Rev. Mod. Phys. 79 53
[6] Jing H 2008 Chin. Phys. Lett. 25 847
[7] Zheng A S, Liu J B and Chen H Y 2011 Chin. Phys. Lett. 28 080303
[8] Bergmann K, Vitanov N V and Shore B W 2015 J. Chem. Phys. 142 170901
[9] Unanyan R G, Yatsenko L P, Bergmann K and Shore B W 1997 Opt. Commun. 139 48
[10] Chen X, Lizuain I, Ruschhaupt A, Guéry-Odelin D and Muga J G 2010 Phys. Rev. Lett. 105 123003
[11] Demirplak M and Rice S A 2003 J. Chem. Phys. A 107 9937
[12] Demirplak M and Rice S A 2005 J. Chem. Phys. B 109 6838
[13] Berry M V 2009 J. Phys. A: Math. Theor. 42 365303
[14] Ruschhaupt A, Chen X, Alonso D and Muga J G 2012 New J. Phys. 14 093040
[15] del Campo A 2013 Phys. Rev. Lett. 111 100502
[16] Martínez-Garaot S, Torrontegui E, Chen X and Muga J G 2014 Phys. Rev. A 89 053408
[17] Guéry-Odelin D, Ruschhaupt A, Kiely A, Torrontegui E, Martínez- Garaot S and Muga J G 2019 Rev. Mod. Phys. 91 045001
[18] Li K Z, Tian J Z and Xiao L T 2024 Phys. Rev. A 109 022443
[19] Li Y C and Chen X 2016 Phys. Rev. A 94 063411
[20] Chen X and Muga J G 2012 Phys. Rev. A 86 033405
[21] Baksic A, Ribeiro H and Clerk A A 2016 Phys. Rev. Lett. 116 230503
[22] Zhou B B, Baksic A, Ribeiro H, Yale C G, Heremans F J, Jerger P C, Auer A, Burkard G, Clerk A A and Awschalom D D 2017 Nat. Phys. 13 330
[23] Song X K, Meng F, Liu B-J, Wang D, Ye L and Yung M H 2021 Opt. Express 29 7998
[24] ZhengW, Zhang Y, Dong Y, Xu J,Wang Z,Wang X, Li Y, Lan D, Zhao J, Li S and others 2022 npj Quantum Information 8 9
[25] Kumar K S, Vepsäläinen A, Danilin S and Paraoanu G S 2016 Nat. Commun. 7 10628
[26] Vepsäläinen A, Danilin S and Paraoanu G S 2019 Sci. Adv. 5 eaau5999
[27] Gong M, Yu M, Chu Y, Chen W, Cao Q, Wang N, Cai J, Betzholz R and Giannelli L 2024 Phys. Rev. A 109 032626
[28] Giannelli L and Arimondo E 2014 Phys. Rev. A 89 033419
[29] Du Y X, Liang Z T, Li Y C, Yue X X, Lv Q X, Huang W, Chen X, Yan H and Zhu S L 2016 Nat. Commun. 7 12479
[30] Evangelakos V, Paspalakis E and Stefanatos D 2023 Phys. Rev. A 107 052606
[31] Wilson C M, Duty T, Persson F, Sandberg M, Johansson G and Delsing P 2007 Phys. Rev. Lett. 98 257003
[32] Timoney N, Baumgart I, Johanning M, Varón A F, PlenioMB, Retzker A and Wunderlich Ch 2011 Nature 476 185
[33] Cai J M, Naydenov B, Pfeiffer R, McGuinness L P, Jahnke K D, Jelezko F, Plenio M B and Retzker A 2012 New J. Phys. 14 113023
[34] Xu X,Wang Z, Duan C, Huang P,Wang P,Wang Y, Xu N, Kong X, Shi F, Rong X and Du J 2012 Phys. Rev. Lett. 109 070502
[35] Belthangady C, Bar-Gill N, Pham L M, Arai K, Le Sage D, Cappellaro P and Walsworth R L 2013 Phys. Rev. Lett. 110 157601
[36] Koshino K, Inomata K, Yamamoto T and Nakamura Y 2013 Phys. Rev. Lett. 111 153601
[37] Golter D A, Baldwin T K and Wang H 2014 Phys. Rev. Lett. 113 237601
[38] Teissier J, Barfuss A and Maletinsky P 2017 J. Opt. 19 044003
[39] Xue Z Y, Gu F L, Hong Z P, Yang Z H, Zhang D W, Hu Y and You J Q 2017 Phys. Rev. Appl. 7 054022
[40] Barfuss A, Kölbl J, Thiel L, Teissier J, Kasperczyk M and Maletinsky P 2018 Nat. Phys. 14 1087
[41] Kölbl J, Barfuss A, Kasperczyk M S, Thiel L, Clerk A A, Ribeiro H and Maletinsky P 2019 Phys. Rev. Lett. 122 090502
[42] Jin F, Geng J and Zhou H 2025 Phys. Rev. A 111 022620
[43] Vasilev G S, Kuhn A and Vitanov N V 2009 Phys. Rev. A 80 013417
[44] González F J and Coto R 2022 Quantum Science and Technology 7 025015
[45] Du Y X, Liang Z T, Huang W, Yan H and Zhu S L 2014 Phys. Rev. A 90 023821
[46] Ling K, Jiang L, Wan R G and Yao Z H 2023 Chin. Phys. B 32 044211
[47] Sørensen J L, Møller D, Iversen T, Thomsen J B, Jensen F, Staanum P, Voigt D and Drewsen M 2006 New J. Phys. 8 261
[48] Zhang J W, Bu J T, Li J C, Meng W, Ding W Q, Wang B, Yuan W F, Du H J, Ding G Y, Chen W J, Chen L, Zhou F, Xu Z and Feng M 2024 Phys. Rev. Lett. 132 213602
[49] Fountoulakis A and Paspalakis E 2013 J. Appl. Phys. 113 174301
[50] Liu X F, Matsumoto Y, Fujita T, Ludwig A, Wieck A D and Oiwa A 2024 Phys. Rev. Lett. 132 027002
[1] Optimal multi-parameter quantum metrology for frequencies of magnetic field
Zhenhua Long(龙振华) and Shengshi Pang(庞盛世). Chin. Phys. B, 2025, 34(8): 080301.
[2] Simulations of superconducting quantum gates by digital flux tuner for qubits
Xiao Geng(耿霄), Kaiyong He(何楷泳), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2024, 33(7): 070305.
[3] Enhancing quantum metrology for multiple frequencies of oscillating magnetic fields by quantum control
Xin Lei(雷昕), Jingyi Fan(范静怡), and Shengshi Pang(庞盛世). Chin. Phys. B, 2024, 33(6): 060304.
[4] Quantum control based on three forms of Lyapunov functions
Guo-Hui Yu(俞国慧) and Hong-Li Yang(杨洪礼). Chin. Phys. B, 2024, 33(4): 040201.
[5] Exact quantum dynamics for two-level systems with time-dependent driving
Zhi-Cheng He(贺郅程), Yi-Xuan Wu(吴奕璇), and Zheng-Yuan Xue(薛正远). Chin. Phys. B, 2024, 33(12): 120310.
[6] Comparison of differential evolution, particle swarm optimization, quantum-behaved particle swarm optimization, and quantum evolutionary algorithm for preparation of quantum states
Xin Cheng(程鑫), Xiu-Juan Lu(鲁秀娟), Ya-Nan Liu(刘亚楠), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(2): 020202.
[7] Simulating the resonance-mediated (1+2)-three-photon absorption enhancement in Pr3+ ions by a rectangle phase modulation
Wenjing Cheng(程文静), Yuan Li(李媛), Hongzhen Qiao(乔红贞), Meng Wang(王蒙), Shaoshuo Ma(马绍朔), Fangjie Shu(舒方杰), Chuanqi Xie(解传奇), and Guo Liang(梁果). Chin. Phys. B, 2022, 31(6): 063201.
[8] Stable quantum interference enabled by coexisting detuned and resonant STIRAPs
Dan Liu(刘丹), Yichun Gao(高益淳), Jianqin Xu(许建琴), and Jing Qian(钱静). Chin. Phys. B, 2021, 30(5): 053701.
[9] Fast generation of W state via superadiabatic-based shortcut in circuit quantum electrodynamics
Xue-Mei Wang(王雪梅), An-Qi Zhang(张安琪), Peng Xu(许鹏, and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2021, 30(3): 030307.
[10] Theoretical analysis of the coupling between Feshbach states and hyperfine excited states in the creation of 23Na40K molecule
Ya-Xiong Liu(刘亚雄), Bo Zhao(赵博). Chin. Phys. B, 2020, 29(2): 023103.
[11] Chaotic state as an output of vacuum state evolving in diffusion channel and generation of displaced chaotic state for quantum controlling
Feng Chen(陈锋), Wei Xiong(熊伟), Bao-Long Fang(方保龙) , and Hong-Yi Fan(范洪义). Chin. Phys. B, 2020, 29(12): 124202.
[12] Demonstration of superadiabatic population transfer in superconducting qubit
Mengmeng Li(李蒙蒙), Xinsheng Tan(谭新生), Kunzhe Dai(戴坤哲), Peng Zhao(赵鹏), Haifeng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2018, 27(6): 063202.
[13] Nuclear magnetic resonance for quantum computing: Techniques and recent achievements
Tao Xin(辛涛), Bi-Xue Wang(王碧雪), Ke-Ren Li(李可仁), Xiang-Yu Kong(孔祥宇), Shi-Jie Wei(魏世杰), Tao Wang(王涛), Dong Ruan(阮东), Gui-Lu Long(龙桂鲁). Chin. Phys. B, 2018, 27(2): 020308.
[14] Simulating resonance-mediated two-photon absorption enhancement in rare-earth ions by a rectangle phase modulation
Da-Long Qi(齐大龙), Ye Zheng(郑烨), Wen-Jing Cheng(程文静), Yun-Hua Yao(姚云华), Lian-Zhong Deng(邓联忠), Dong-Hai Feng(冯东海), Tian-Qing Jia(贾天卿), Zhen-Rong Sun(孙真荣), Shi-An Zhang(张诗按). Chin. Phys. B, 2018, 27(1): 013202.
[15] Production and detection of ultracold Cs2 molecules via four-photon adiabatic passage
Li Jian (李健), Liu Yong (刘勇), Cong Shu-Lin (丛书林). Chin. Phys. B, 2014, 23(1): 010308.
No Suggested Reading articles found!