|
|
Demonstration of superadiabatic population transfer in superconducting qubit |
Mengmeng Li(李蒙蒙), Xinsheng Tan(谭新生), Kunzhe Dai(戴坤哲), Peng Zhao(赵鹏), Haifeng Yu(于海峰), Yang Yu(于扬) |
National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China |
|
|
Abstract We implemented the superadiabatic population transfer within the nonadiabatic regime in a two-level superconducting qubit system. To realize the superadiabatic procedure, we added an additional term in the Hamiltonian, introducing an auxiliary counter-diabatic field to cancel the nonadiabatic contribution in the evolution. Based on the superadiabatic procedure, we further demonstrated quantum Phase and NOT gates. These operations, which possess both of the fast and robust features, are promising for quantum information processing.
|
Received: 01 March 2018
Revised: 22 March 2018
Accepted manuscript online:
|
PACS:
|
32.80.Xx
|
(Level crossing and optical pumping)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
Fund: Project supported by the National Key Basic Research and Development Program of China (Grant No.2016YFA0301802) and the National Natural Science Foundation of China (Grant Nos.11274156,11504165,11474152,and 61521001). |
Corresponding Authors:
Xinsheng Tan, Haifeng Yu
E-mail: txs.nju@gmail.com;hfyu@nju.edu.cn
|
Cite this article:
Mengmeng Li(李蒙蒙), Xinsheng Tan(谭新生), Kunzhe Dai(戴坤哲), Peng Zhao(赵鹏), Haifeng Yu(于海峰), Yang Yu(于扬) Demonstration of superadiabatic population transfer in superconducting qubit 2018 Chin. Phys. B 27 063202
|
[1] |
Beterov I I, Saffman M, Yakshina E A, Zhukov V P, Tretyakov D B, Entin V M, Ryabtsev I I, Mansell C W, MacCormick C, Bergamini S and Fedoruk M P 2013 Phys. Rev. A 88 010303
|
[2] |
Saffman M, Walker T G and Mølmer K 2010 Rev. Mod. Phys 82 2313
|
[3] |
Leek P J, Fink J M, Blais A, Bianchetti R, Göppl M, Gambetta J M, Schuster D I, Frunzio L, Schoelkopf R J and Wallraff A 2007 Science 318 5858
|
[4] |
Yang Z B, Wu H Z, Zheng S B 2010 Chin. Phys. B 19 094205
|
[5] |
Lin Y J, Compton R L, Jiménez-García K, Porto J V and Spielman I B 2009 Nature 462 628
|
[6] |
Lin Y J, Jiménez-García K and Spielman I B 2011 Nature 471 83
|
[7] |
Dalibard J, Gerbier F, Juzeliūnas G and Öhberg P 2011 Rev. Mod. Phys 83 1523
|
[8] |
Kasevich M 2002 Science 298 1363
|
[9] |
Kovachy T, Chiow S W and Kasevich M A 2012 Phys. Rev. A 86 011606
|
[10] |
Vitanov N V, Halfmann T, Shore B W and Bergmann K 2001 Ann. Rev. Phys. Chem. 52 763
|
[11] |
Xu H K, Song C, Liu W Y, Xue G M, Su F F, Deng H, Tian Y, Zheng D N, Han S Y, Zhong Y P, Wang H, Liu Y X and Zhao S P 2016 Nat. Commun. 7 11018
|
[12] |
Zhang X Z, Han H L, Han H P, Fan X W 2005 Chin. Phys 14 720
|
[13] |
Du Y X, Liang Z T, Huang W, Yan H and Zhu S L 2014 Phys. Rev. A 90 023821
|
[14] |
Lim R and Berry M V 1991 J. Phys. A:Math. Gen. 24 3255
|
[15] |
Berry M V 2009 J. Phys. A:Math. Theor. 42 365303
|
[16] |
Demirplak M and Rice S A 2003 J. Phys. Chem. A 107 9937
|
[17] |
Demirplak M and Rice S A 2005 J. Phys. Chem. B 109 6838
|
[18] |
Demirplak M and Rice S A 2008 J. Chem. Phys. 129 154111
|
[19] |
Torrontegui E, Ibáñez S, Martínez-Garaot S, Modugno M, del Campo A, Guéry-Odelin D, Ruschhaupt A, Chen X, Muga J G 2013 Adv. At. Mol. Opt. Phys. 62 117
|
[20] |
Chen X, Lizuain I, Ruschhaupt A, Gueŕy-Odelin D and Muga J G 2010 Phys. Rev. Lett. 105 123003
|
[21] |
Dou F Q, Liu J and Fu L B 2016 Europhys. Lett. 116 60014
|
[22] |
Giannelli L and Arimondo E 2014 Phys. Rev. A 89 033419
|
[23] |
del Campo A 2013 Phys. Rev. Lett. 111 100502
|
[24] |
Du Y X, Liang Z T, Li Y C, Yue X X, Lv Q X, Huang W, Chen X, Yan H and Zhu S L 2016 Nat. Commun. 7 12479
|
[25] |
Zhang J F, Shim J H, Niemeyer I, Taniguchi T, Teraji T, Abe H, Onoda S, Yamamoto T, Ohshima T, Isoya J and Suter D 2013 Phys. Rev. Lett. 110 240501
|
[26] |
Bason M G, Viteau M, Malossi N, Huillery P, Arimondo E, Ciampini D, Fazio R, Giovannetti V, Mannella R and Morsch O 2012 Nat. Phys. 8 147
|
[27] |
Gong M, Zhou Y, Lan D, Fan Y Y, Pan J Z, Yu H F, Chen J, Sun G Z, Yu Y, Han S Y and Wu P H 2016 Appl. Phys. Lett. 108 112602
|
[28] |
Zhang Z X, Wang T H, Xiang L, Yao J D, Wu J L and Yin Y 2017 Phys. Rev. A 95 042345
|
[29] |
Liang Z T, Yue X X, Lv Q X, Du Y X, Huang W, Yan H and Zhu S L 2016 Phys. Rev. A 93 040305
|
[30] |
Liu Y X, Wei L F and Nori F 2004 Europhys. Lett. 67 874
|
[31] |
Liu Y X, Wei L F and Nori F 2005 Phys. Rev. B 72 014547
|
[32] |
Hollenberg Lloyd C L 2012 Nat. Phys. 8 113
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|