|
|
Production and detection of ultracold Cs2 molecules via four-photon adiabatic passage |
Li Jian (李健), Liu Yong (刘勇), Cong Shu-Lin (丛书林) |
School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China |
|
|
Abstract We study theoretically how to produce and detect the ultracold ground-state Cs2 molecule from Feshbach state. Numerical calculations are performed by solving the quantum Liouville equation based on multilevel Bloch model. The producing efficiency reaches 55% and the detecting efficiency is 31%. The producing and detecting efficiencies are closely related to the Rabi frequencies of laser pulses. The decay of relevant electronic and vibrational states obviously reduces the producing and detecting efficiencies.
|
Received: 30 March 2013
Revised: 07 June 2013
Accepted manuscript online:
|
PACS:
|
03.75.Nt
|
(Other Bose-Einstein condensation phenomena)
|
|
42.65.Dr
|
(Stimulated Raman scattering; CARS)
|
|
32.80.Qk
|
(Coherent control of atomic interactions with photons)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974024 and 11274056). |
Corresponding Authors:
Cong Shu-Lin
E-mail: shlcong@dlut.edu.cn
|
Cite this article:
Li Jian (李健), Liu Yong (刘勇), Cong Shu-Lin (丛书林) Production and detection of ultracold Cs2 molecules via four-photon adiabatic passage 2014 Chin. Phys. B 23 010308
|
[1] |
Lambert J, Noel M W and Gallagher T F 2002 Phys. Rev. A 66 053413
|
[2] |
Zhang W, Xie T, Huang Y, Wang G R and Cong S L 2013 Chin. Phys. B 22 013301
|
[3] |
Wu J Z, Ma J, Ji Z H, Zhang Y C, Li Y Q, Wang L R, Zhao Y T, Xiao L T and Jia S T 2012 Chin. Phys. B 21 093701
|
[4] |
Hua W, Li B and Liu X S 2011 Chin. Phys. B 20 060308
|
[5] |
Hua W, Li B and Liu X S 2011 Chin. Phys. B 20 010311
|
[6] |
Lin F, Zhang W, Zhao Z Y and Cong S L 2012 Chin. Phys. B 21 073203
|
[7] |
Micheli A, Brennen G K and Zoller P 2006 Nat. Phys. 2 341
|
[8] |
Chin C, Flambaum V V and Kozlov M G 2009 New J. Phys. 11 055048
|
[9] |
Zelevinsky T, Kotochigova S and Ye J 2008 Phys. Rev. Lett. 100 043201
|
[10] |
Koch C P, Luc-Koenig E and Masnou-Seeuws F 2006 Phys. Rev. A 73 033408
|
[11] |
Koch C P, Kosloff R, Luc-Koenig E, Masnou-Seeuws F and Crubellier A 2006 J. Phys. B 39 S1017
|
[12] |
Zhang C Z, Zheng B, Wang J and Meng Q T 2013 Chin. Phys. B 22 023401
|
[13] |
Aikawa K, Akamatsu D, Hayashi M, Oasa K, Kobayashi J, Naidon P, Kishimoto T, Ueda M and Inouye S 2010 Phys. Rev. Lett. 105 203001
|
[14] |
Zhang Y C, Ma J, Wu J Z, Wang L R, Xiao L T and Jia S T 2013 Phys. Rev. A 87 030503
|
[15] |
Wu J Z, Ji Z H, Zhang Y C, Wang L R, Zhao Y T, Ma J, Xiao L T and Jia S T 2011 Opt. Lett. 36 2038
|
[16] |
Zhang Y C, Ma J, Li Y Q, Wu J Z, Zhang L J, Chen G, Wang L R, Zhao Y T, Xiao L T and Jia S T 2012 Appl. Phys. Lett. 101 131114
|
[17] |
Chen D Y, Lu Z Z, Fan R W, Xia Y Q, Zhou Z G and Ji Y Q 2012 Chin. Phys. B 21 083202
|
[18] |
Wang G R, Xie T, Zhang W, Huang Y and Cong S L 2012 Phys. Rev. A 85 032706
|
[19] |
Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
|
[20] |
Mackie M, Fenty M, Savage D and Kesselman J 2008 Phys. Rev. Lett. 101 040401
|
[21] |
Mackie M, Phou P, Boyce H, Shinn M and Katz L 2011 Phys. Rev. A 84 043614
|
[22] |
Mackie M and Phou P 2010 Phys. Rev. A 82 035602
|
[23] |
Bergmann K, Theuer H and Shore B W 1998 Rev. Mod. Phys. 70 1003
|
[24] |
Winkler K, Lang F, Thalhammer G, Straten P V D, Grimm R and Denschlag J H 2007 Phys. Rev. Lett. 98 043201
|
[25] |
Mark M J, Danzl J G, Haller E, Gustavsson M, Bouloufa N, Dulieu O, Salami H, Bergeman T, Ritsch H, Hart R and Nägerl H C 2009 Appl. Phys. B 95 219
|
[26] |
Danzl J G, Mark M J, Haller E, Gustavsson M, Hart R, Aldegunde J, Hutson J M and Nägerl H C 2010 Nat. Phys. 6 265
|
[27] |
Kuznetsova E, Pellegrini P, Côté R, Lukin M D and Yelin S F 2008 Phys. Rev. A 78 021402
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|