|
|
|
Uniform wafer-scale MOCVD homoepitaxy of β-Ga2O3 on 2-inch (010) substrates |
| Xuanze Zhou(周选择)1, Haozhong Wu(吴昊中)1, Yuanjie Ding(丁元杰)1, Ziyuan Wang(王子原)1, Zhiyu Zhou(周智宇)1, Ning Xia(夏宁)2, Song Zhang(张嵩)3,4,†, Guangwei Xu(徐光伟)1,‡, Hui Zhang(张辉)2, and Shibing Long(龙世兵)1 |
1 School of Microelectronics, University of Science and Technology of China, Hefei 230026, China; 2 Hangzhou Garen Semiconductor Company Limited, Hangzhou 311200, China; 3 The 46th Research Institute, China Electronics Technology Group Corporation, Tianjin 300220, China; 4 CETC Key Laboratory of Advanced Semiconductor Crystal Materials and Technologies, Tianjin 300220, China |
|
|
|
|
Abstract The (010) orientation of $\beta $-Ga$_2$O$_3$ is a highly promising platform for next-generation lateral power electronics due to its superior theoretical transport properties. However, progress has been impeded by the unavailability of large-area substrates, limiting studies to small-scale samples. Leveraging the recent emergence of 2-inch wafers, we report the first demonstration of homoepitaxial growth on a 2-inch, Fe-doped semi-insulating (010) $\beta $-Ga$_2$O$_3$ substrate by metal-organic chemical vapor deposition (MOCVD). A systematic, wafer-scale characterization reveals the successful growth of a high-quality epitaxial film. High-resolution x-ray diffraction shows an excellent crystalline structure, with a rocking curve full-width ranging from 21.0 arcsec to 103.0 arcsec. Atomic force microscopy confirms an atomically smooth surface with a root-mean-square roughness below 1.53 nm, displaying a distinct step-flow growth mode across the wafer. Furthermore, mercury-probe capacitance-voltage mapping indicates a well-controlled carrier concentration of $\sim 2\times 10^{18}$ cm$^{-3}$ with a RSD of 5.12%. This work provides the first comprehensive assessment of 2-inch (010) Ga$_2$O$_3$ epitaxial wafers, validating a critical material platform for the development and future manufacturing of high-performance power devices.
|
Received: 19 September 2025
Revised: 13 October 2025
Accepted manuscript online: 14 October 2025
|
|
PACS:
|
68.35.bg
|
(Semiconductors)
|
| |
84.30.Jc
|
(Power electronics; power supply circuits)
|
| |
81.10.Bk
|
(Growth from vapor)
|
| |
81.15.Kk
|
(Vapor phase epitaxy; growth from vapor phase)
|
|
| Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. U23A20358, 62474170, 61925110, 62404214, and 62234007), the University of Science and Technology of China (USTC) Research Funds of the Double First-Class Initiative (Grant No. WK2100000055), the Project of the 46th Research Institute of CETC (Grant No. WDZC202446007), the JieBang Headed Project of Changsha City Hunan Province (Grant No. kq2301006), and the Opening Project and the Key Laboratory of Nano devices and Applications in Suzhou Institute of Nano-Tech and NanoBionics of CAS. |
Corresponding Authors:
Song Zhang, Guangwei Xu
E-mail: zhangsong02@163.com;xugw@ustc.edu.cn
|
Cite this article:
Xuanze Zhou(周选择), Haozhong Wu(吴昊中), Yuanjie Ding(丁元杰), Ziyuan Wang(王子原), Zhiyu Zhou(周智宇), Ning Xia(夏宁), Song Zhang(张嵩), Guangwei Xu(徐光伟), Hui Zhang(张辉), and Shibing Long(龙世兵) Uniform wafer-scale MOCVD homoepitaxy of β-Ga2O3 on 2-inch (010) substrates 2026 Chin. Phys. B 35 016801
|
[1] Higashiwaki M, Sasaki K, Kuramata A, Masui T and Yamakoshi S 2012 Appl. Phys. Lett. 100 013504 [2] Ma N, Tanen N, Verma A, Guo Z, Luo T, Xing H and Jena D 2016 Appl. Phys. Lett. 109 212101 [3] Baldini M, Galazka Z and Wagner G 2018 Mat. Sci. Semicon. Proc. 78 132 [4] Green A, Chabak K, Heller E, Fitch R, Baldini M, Fiedler A, Irmscher K, Wagner G, Galazka Z, Tetlak S, Crespo A, Leedy K and Jessen G 2016 IEEE Electron Device Lett. 37 902 [5] Konishi K, Goto K, Murakami H, Kumagai Y, Kuramata A, Yamakoshi S and Higashiwaki M 2017 Appl. Phys. Lett. 110 103506 [6] Zhou X, Ma Y, Xu G, Liu Q, Liu J, He Q, Zhao X and Long S 2022 Appl. Phys. Lett. 121 223501 [7] Zhang J, Dong P, Dang K, Zhang Y, Yan Q, Xiang H, Su J, Liu Z, Si M, Gao J, Kong M, Zhou H and Hao Y 2022 Nat. Commun. 13 3900 [8] Tomm Y, Reiche P, Klimm D and Fukuda T 2000 J. Cryst. Growth 220 510 [9] Galazka Z, Irmscher K, Uecker R, Bertram R, Pietsch M, Kwasniewski A, Naumann M, Schulz T, Schewski R, Klimm D and Bickermann M 2014 J. Cryst. Growth 404 184 [10] Galazka Z, Uecker R, Klimm D, Irmscher K, Naumann M, Pietsch M, Kwasniewski A, Bertram R, Ganschow S and Bickermann M 2017 ECS J. Solid State Sci. Technol. 6 Q3007 [11] Kuramata A, Koshi K, Watanabe S, Yamaoka Y, Masui T and Yamakoshi S 2016 Jpn. J. Appl. Phys. 55 1202 [12] Fu H, Chen H, Huang X, Baranowski I, Montes J, Yang T and Zhao Y 2018 IEEE Trans. Electron Devices 65 3507 [13] Mu W X, Jia Z T, Yin Y R, Hu Q Q, Li Y, Wu B Y, Zhang J and Tao X T 2017 J. Alloys Compd. 714 453 [14] Hoshikawa K, Kobayashi T and Ohba E 2020 J. Cryst. Growth 546 125778 [15] Xia N, Liu Y, Wu D, Li L, Ma K, Wang J, Zhang H and Yang D 2023 J. Alloys Compd. 935 168036 [16] Yan Y, Wu D, Xia N, Deng T, Zhang H and Yang D 2024 Appl. Phys. Lett. 124 122102 [17] Mauze A, Zhang Y, Itoh T, Ahmadi E and Speck J S 2020 Appl. Phys. Lett. 117 222102 [18] Sasaki K, Higashiwaki M, Kuramata A, Masui T and Yamakoshi S 2013 J. Cryst. Growth 378 591 [19] Liu X Z, Yue C, Xia C T and Zhang W L 2016 Chin. Phys. B 25 017201 [20] Nepal N, Scott Katzer D and Meyer D J 2019 Gallium Oxide pp. 31–46 [21] Murakami H, Nomura K, Goto K, Sasaki K, Kawara K, Thieu Q T, Togashi R, Kumagai Y, Higashiwaki M, Kuramata A, Yamakoshi S, Monemar B and Koukitu A 2015 Appl. Phys. Exp. 8 015503 [22] Higashiwaki M, Sasaki K, Goto K, Nomura K, Thieu Q T, Togashi R, Murakami H, Kumagai Y, Monemar B, Koukitu A, Kuramata A and Yamakoshi S 2015 2015 73rd Annual Device Research Conference (DRC), pp. 29–30 [23] Higashiwaki M, Konishi K, Sasaki K, Goto K, Nomura K, Thieu Q T, Togashi R, Murakami H, Kumagai Y, Monemar B, Koukitu A, Kuramata A and Yamakoshi S 2016 Appl. Phys. Lett. 108 133503 [24] Goto K, Konishi K, Murakami H, Kumagai Y, Monemar B, Higashiwaki M, Kuramata A and Yamakoshi S 2018 Thin Solid Films 666 182 [25] Tadjer M J, Koehler A D, Freitas J A, Gallagher J C, Specht M C, Glaser E R, Hobart K D, Anderson T J, Kub F J, Thieu Q T, Sasaki K, Wakimoto D, Goto K, Watanabe S and Kuramata A 2018 Appl. Phys. Lett. 113 192102 [26] Hellwig M, Xu K, Barreca D, Gasparotto A, Niermann B, Winter J, Becker H W, Rogalla D, Fischer R A and Devi A 2009 Ecs Transactions 25 617 [27] Du X, Mi W, Luan C, Li Z, Xia C and Ma J 2014 J. Cryst. Growth 404 75 [28] Gogova D, Wagner G, Baldini M, Schmidbauer M, Irmscher K, Schewski R, Galazka Z, Albrecht M and Fornari R 2014 J. Cryst. Growth 401 665 [29] Wagner G, Baldini M, Gogova D, Schmidbauer M, Schewski R, Albrecht M, Galazka Z, Klimm D and Fornari R 2014 Phys. status solidi (A) 211 27 [30] Du X, Li Z, Luan C, Wang W, Wang M, Feng X, Xiao H and Ma J 2015 J. Mater. Sci. 50 3252 [31] Alema F, Zhang Y W, Osinsky A, Valente N, Mauze A, Itoh T and Speck J S 2019 APL Mater. 7 121110 [32] Feng Z X, Bhuiyan A F M A U, Karim M R and Zhao H P 2019 Appl. Phys. Lett. 114 250601 [33] Theodoropoulos C, Ingle N K, Mountziaris T J, Chen Z Y, Liu P L, Kioseoglou G and Petrou A 1995 J. Electrochem. Soc. 142 2086 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|