| INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
|
|
|
Molecular dynamics study on the effect of cooling rate on the mechanical behavior of B2-CuZr enhanced bulk-metallic glass composites |
| Huahuai Shen(沈华淮), Kai Wang(王楷), Chenghao Chen(陈城豪), Jiaqing Wu(伍嘉卿), Mixun Zhu(朱谧询), Hongtao Zhong(钟泓涛), Yuanzheng Yang(杨元政), and Xiaoling Fu(付小玲)† |
| School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China |
|
|
|
|
Abstract Metallic glasses (MG) have attracted considerable attention due to their high hardness, high fracture strength, and excellent corrosion resistance. However, their poor room-temperature plasticity limits their widespread application to some extent. To address this issue, researchers have attempted to introduce crystalline phases into MG to enhance their mechanical properties. Molecular dynamics (MD) simulations are a powerful tool for investigating the properties and deformation mechanisms of amorphous/crystalline dual-phase composite materials. In this study, MD simulations were employed to explore the effect of different cooling rates on the tensile properties of B2-CuZr enhanced bulk-metallic glass composites (BMGCs). Molecular dynamics simulations were conducted on B2-CuZr enhanced BMGCs at an ambient temperature of 300 K. The results indicate that as the cooling rate decreases, from 100 K/ps, 10 K/ps, 1 K/ps, 0.5 K/ps, the content of $\langle 0,0,12,0\rangle$ polyhedra increases, resulting in improved mechanical strength but reduced plasticity. In this study, as the cooling rate increases from 0.5 K/ps to 100 K/ps, the deformation strain increases from $\varepsilon=0.407$ to $\varepsilon=0.466$. However, the specimens with a cooling rate of 1 K/ps display notably better plasticity, deviating from the trend. This enhancement in plasticity is attributed to the increased presence of $\langle 0,2,8,5\rangle$ polyhedra in the 1 K/ps sample. The findings of this study provide valuable insights for the design and fabrication of high-performance metallic glass materials.
|
Received: 03 May 2025
Revised: 25 July 2025
Accepted manuscript online: 11 August 2025
|
|
PACS:
|
81.05.Pj
|
(Glass-based composites, vitroceramics)
|
| |
64.70.pe
|
(Metallic glasses)
|
| |
61.20.Ja
|
(Computer simulation of liquid structure)
|
| |
81.40.Lm
|
(Deformation, plasticity, and creep)
|
|
| Fund: The work was supported by the National Natural Science Foundation of China (Grant No. 52471005) and the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2024A1515010878). |
Corresponding Authors:
Xiaoling Fu
E-mail: fuxiaoling@gdut.edu.cn
|
| About author: 2025-128102-250797.pdf |
Cite this article:
Huahuai Shen(沈华淮), Kai Wang(王楷), Chenghao Chen(陈城豪), Jiaqing Wu(伍嘉卿), Mixun Zhu(朱谧询), Hongtao Zhong(钟泓涛), Yuanzheng Yang(杨元政), and Xiaoling Fu(付小玲) Molecular dynamics study on the effect of cooling rate on the mechanical behavior of B2-CuZr enhanced bulk-metallic glass composites 2025 Chin. Phys. B 34 128102
|
[1] Sohrabi S, Fu J, Li L, Zhang Y, Li X, Sun F, Ma J andWangWH 2024 Progress in Materials Science 144 101283 [2] Lou H, Zeng Z, Zhang F, Chen S, Luo P, Chen X, Ren Y, Prakapenka V B, Prescher C, Zuo X, Li T, Wen J, Wang W H, Sheng H and Zeng Q 2020 Nat. Commun. 11 314 [3] Sayad S, Khanzadeh M, Alahyarizadeh G and Amigo N 2023 Sci. Rep. 13 16109 [4] Wang P, Wang J Q, Li H, Yang H, Huo J, Wang J, Chang C, Wang X, Li R W and Wang G 2017 J. Alloys Compd. 701 759 [5] Yue X, Brechtl J, Wang F, Chang Z, Liaw P K and Fan C 2020 Materials & Design 191 108660 [6] Gludovatz B, Granata D, Thurston K V S, Löffler J F and Ritchie R O 2017 Acta Materialia 126 494 [7] Liang S X, Sun L, Loza K, Zerebecki S, Jia Z, Yang Y, Qiao J, Zhang L C and Reichenberger S 2025 Applied Surface Science 679 161269 [8] Tao K, Li F, Liu Y, Pineda E, Song K and Qiao J 2024 International Journal of Plasticity 174 103873 [9] Wang N, Ding J, Yan F, Asta M, Ritchie R O and Li L 2018 npj Computational Materials 4 19 [10] Chen W, Zhou H, Liu Z, Ketkaew J, Shao L, Li N, Gong P, Samela W, Gao H and Schroers J 2018 Acta Materialia 145 477 [11] Dong Q, Tan J, Li C, Sarac B and Eckert J 2024 Composites Part B: Engineering 280 111453 [12] Wang W H 2012 Progress in Materials Science 57 487 [13] Hofmann D C 2010 Science 329 1294 [14] Li D M, Chen L S, Yu P, Ding D and Xia L 2020 Chin. Phys. Lett. 37 086401 [15] Song K, Pauly S, Zhang Y, Li R, Gorantla S, Narayanan N, Kühn U, Gemming T and Eckert J 2012 Acta Materialia 60 6000 [16] Pauly S, Liu G, Wang G, Kühn U, Mattern N and Eckert J 2009 Acta Materialia 57 5445 [17] Li J, Chen X and Huang F 2018 J. Alloys Compd. 737 271 [18] Tong X, Wang G, Yi J, Ren J, Pauly S, Gao Y, Zhai Q J, Mattern N, Dahmen K A and Liaw P K 2016 International Journal of Plasticity 77 141 [19] Sterwerf C, Kaub T, Deng C, Thompson G B and Li L 2017 Thin Solid Films 626 184 [20] Yang M, Li J and Liu B 2018 J. Alloys Compd. 735 1023 [21] Yang G, Xu B, Kong L, Li J and Zhao S 2016 J. Alloys Compd. 688 88 [22] Peng C X, Sopu D, Cheng Y, Song K K, Wang S H, Eckert J and Wang L 2019 Materials & Design 168 107662 [23] Feng S D, Li L, Chan K C, Qi L, Zhao L, Wang L M and Liu R P 2019 J. Alloys Compd. 770 896 [24] Cao Q P, Li J F, Hu Y, Horsewell A, Jiang J Z and Zhou Y H 2007 Materials Science and Engineering: A 457 94 [25] Sun P, Peng C, Cheng Y, Zhang G, Wang P, Jia L and Wang L 2019 Computational Materials Science 163 290 [26] Zhao Y, Peng X, Yang B, Huang C, Hu N and Yan C 2019 Ceramics International 45 19845 [27] Ning Z, Liang W, Kang Z, Sun H and Sun J 2017 Materials Science and Engineering: A 697 233 [28] Zhou H, Qu S and Yang W 2013 International Journal of Plasticity 44 147 [29] Wu Y,Wang H,Wu H H, Zhang Z Y, Hui X D, Chen G L, Ma D,Wang X L and Lu Z P 2011 Acta Materialia 59 2928 [30] Song K K, Pauly S, Zhang Y, Li R, Gorantla S, Narayanan N, Kühn U, Gemming T and Eckert J 2012 Acta Materialia 60 6000 [31] Wu Y, Xiao Y, Chen G, Liu C T and Lu Z 2010 Adv. Mater. 22 2770 [32] Yue X X, Liu C T, Pan S Y, Inoue A, Liaw P K and Fan C 2018 Physica B 547 48 [33] Li Y, Qiu S B, Shao Y and Yao K F 2011 Chin. Phys. Lett. 28 116104 [34] Huang Y, Fan H, Wang D, Sun Y, Liu F, Shen J, Sun J and Mi J 2014 Materials & Design 58 284 [35] Yang L, Guo G Q, Chen L Y, LaQua B and Jiang J Z 2014 Intermetallics 44 94 [36] Singh D, Mandal R K, Tiwari R S and Srivastava O N 2015 J. Alloys Compd. 648 456 [37] Feng S D, Chan K C, Chen S H, Zhao L and Liu R P 2017 Scientific Reports 7 40969 [38] Pan J, Wang Y X, Guo Q, Zhang D, Greer A L and Li Y 2018 Nat. Commun. 9 560 [39] Sheng H W, Luo W K, Alamgir F M, Bai J M and Ma E 2006 Nature 439 419 [40] Cheng Y Q, Sheng H W and Ma E 2008 Phys. Rev. B 78 014207 [41] Liu R, Wu J, Hai R, Zhong H, Li P, Xue P, Tan M J, Yang Y and Fu X 2024 Journal of Materials Research and Technology 32 1342 [42] Zhang C, Liu H S and Peng H L 2023 Chin. Phys. B 32 116101 [43] He Y, Ma C, Li S, Yi P, Liu H, Yang W, Chen Z, Zhang P, Chen C and Shen B 2024 Materialia 33 102017 [44] Shao Y F, Meng F S, Li J H and Zhao X 2019 Acta Phys. Sin. 68 216201 (in Chinese) [45] Plimpton S 1995 Journal of Computational Physics 117 1 [46] Mendelev M I, Sun Y, Zhang F, Wang C Z and Ho K M 2019 The Journal of Chemical Physics 151 214502 [47] Wu J, Zhu M, Li S, Zhong H, Li P, Song K, Song W, Tan M J, Yang Y and Fu X 2024 Materials Today Communications 40 109474 [48] Zhou Z, Zhu M, He Y, Wu J, Lin Y, Li P, Tan M J, Yang Y and Fu X 2023 J. Alloys Compd. 968 172049 [49] Sopu D, Yuan X, Moitzi F, Stoica M and Eckert J 2019 Materials 12 1419 [50] Fu X, Wu J, Zhou Z, Tan M J, Huang Y, Sun J, Song W, Guan P, Yang Y, Li Y and Ritchie R O 2025 Acta Materialia 287 120787 [51] Fu X, Lin Y, Zhu M, Wang K, Wu J, Tong X, Song W, Tan M J, Yang Y, Shen J,Wang G, Shek C H and Ritchie R O 2023 npj Computational Materials 9 226 [52] Shimizu F, Ogata S and Li J 2007 Materials Transactions 48 2923 [53] Stukowski A 2010 Modelling and Simulation in Materials Science and Engineering 18 015012 [54] Li M Z, Peng H L, Hu Y C, Li F X, Zhang H P and Wang W H 2017 Chin. Phys. B 26 016104 [55] Pan J, Chen Q, Liu L and Li Y 2011 Acta Materialia 59 5146 [56] Amigo N, Urbina F and Valencia F 2020 Computational Materials Science 184 109941 [57] Liu Z Q, Liu G, Qu R T, Zhang Z F,Wu S J and Zhang T 2014 Scientific Reports 4 4167 [58] Idury K S N S, Murty B S and Bhatt J 2016 J. Non-Crystal. Solids 454 59 [59] Li M Z 2014 Journal of Materials Science & Technology 30 551 [60] Feng S, Qi L, Wang L, Pan S, Ma M, Zhang X, Li G and Liu R 2015 Acta Materialia 95 236 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|