Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 110306    DOI: 10.1088/1674-1056/addcd3
GENERAL Prev   Next  

An SOT-switchable micromagnet scheme of adiabatic geometric gates for silicon spin qubits

Fang-Ge Li(李方阁)1,2, Ranran Cai(蔡冉冉)1,2,†, Bao-Chuan Wang(王保传)1,2, Hai-Ou Li(李海欧)1,2,3, Gang Cao(曹刚)1,2,3,‡, and Guo-Ping Guo(郭国平)1,2,3,4
1 Chinese Academy of Sciences (CAS) Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;
2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
3 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China;
4 Origin Quantum Computing Company Limited, Hefei 230088, China
Abstract  Geometric phase gates have attracted considerable attention due to their intrinsic robustness against certain types of noise. Significant progress has been achieved in implementing geometric phase gates using microwave control in silicon-based electron spin systems. In this work, we propose an alternative geometric phase gate protocol that differs fundamentally from microwave driving approaches by leveraging square-wave control of rapidly switchable micromagnets driven by spin-orbit torque (SOT) to achieve fast and precise magnetic field modulation. By employing square-wave currents to control magnetization switching, our approach relaxes the requirements on waveform precision while significantly suppressing crosstalk. Moreover, our scheme inherently preserves trajectory closure at the end of each operation, effectively mitigating noise-induced path deviation and enhancing gate robustness even under strong noise conditions, thereby offering a promising pathway toward efficient and reliable quantum operations in large-scale qubit arrays.
Keywords:  silicon spin qubit      geometric phase gate      spin-orbit torque      gate operation  
Received:  09 April 2025      Revised:  23 May 2025      Accepted manuscript online:  26 May 2025
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  73.61.Cw (Elemental semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12304560, 92265113, 12074368, and 12034018), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302300), and China Postdoctoral Science Foundation (Grant Nos. BX20220281 and 2023M733408).
Corresponding Authors:  Ranran Cai, Gang Cao     E-mail:  cairanran@ustc.edu.cn;gcao@ustc.edu.cn

Cite this article: 

Fang-Ge Li(李方阁), Ranran Cai(蔡冉冉), Bao-Chuan Wang(王保传), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平) An SOT-switchable micromagnet scheme of adiabatic geometric gates for silicon spin qubits 2025 Chin. Phys. B 34 110306

[1] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[2] Veldhorst M, Hwang J, Yang C, Leenstra A, de Ronde B, Dehollain J, Muhonen J, Hudson F, Itoh K M and Morello A T 2014 Nat. Nanotechnol. 9 981
[3] Yoneda J, Takeda K, Otsuka T, Nakajima T, Delbecq M R, Allison G, Honda T, Kodera T, Oda S and Hoshi Y 2018 Nat. Nanotechnol. 13 102
[4] Vinet M 2021 Nat. Nanotechnol. 16 1296
[5] Yang C, Chan K, Harper R, Huang W, Evans T, Hwang J, Hensen B, Laucht A, Tanttu T and Hudson F 2019 Nat. Electron. 2 151
[6] O’Brien J L, Pryde G J, Gilchrist A, James D F, Langford N K, Ralph T C and White A G 2004 Phys. Rev. Lett. 93 080502
[7] He Y, Gorman S, Keith D, Kranz L, Keizer J and Simmons M 2019 Nature 571 371
[8] Petit L, Eenink H, Russ M, Lawrie W, Hendrickx N, Philips S, Clarke J, Vandersypen L and Veldhorst M 2020 Nature 580 355
[9] Madzik M T, Asaad S, Youssry A, Joecker B, Rudinger K M, Nielsen E, Young K C, Proctor T J, Baczewski A D and Laucht A 2022 Nature 601 348
[10] Mills A R, Guinn C R, Gullans M J, Sigillito A J, Feldman M M, Nielsen E and Petta J R 2022 Sci. Adv. 8 eabn5130
[11] Noiri A, Takeda K, Nakajima T, Kobayashi T, Sammak A, Scappucci G and Tarucha S 2022 Nature 601 338
[12] Xue X, Russ M, Samkharadze N, Undseth B, Sammak A, Scappucci G and Vandersypen L M 2022 Nature 601 343
[13] Dijkema J, Xue X, Harvey-Collard P, Rimbach-Russ M, de Snoo S L, Zheng G, Sammak A, Scappucci G and Vandersypen L M K 2025 Nat. Phys. 21 168
[14] McMillan S R and Burkard G 2023 Phys. Rev. B 108 125414)
[15] Tanttu T, Lim W H, Huang J Y, Stuyck N D, Gilbert W, Su R Y, Feng M, Cifuentes J D, Seedhouse A E, Seritan S K., Ostrove C I, Rudinger K M, Leon R C C, Huang W, Escott C C, Itoh K M, Abrosimov N V, Pohl H J, Thewalt M L W, Hudson F E, Blume-Kohout R, Bartlett S D, Morello A, Laucht A, Yang C H, Saraiva A and Dzurak A S 2024 Nat. Phys. 20 1804
[16] Hahn E L 1950 Phys. Rev. 80 580
[17] Wang X, Bishop L S, Kestner J, Barnes E, Sun K and Das Sarma S 2012 Nat. Commun. 3 997
[18] Emerson J 2019 Nat. Electron. 2 140
[19] Daraeizadeh S, Premaratne S P and Matsuura A Y 2020 IEEE International Conference on Quantum Computing and Engineering (QCE) pp. 30–36
[20] Lapointe-Major M, Germain O, Camirand Lemyre J, LachanceQuirion D, Rochette S, Camirand Lemyre F and Pioro-Ladriere M 2020 Phys. Rev. B 102 085301
[21] Nakajima T, Kojima Y, Uehara Y, Noiri A, Takeda K, Kobayashi T and Tarucha S 2021 Phys. Rev. Appl. 15 L031003
[22] Johansson M, Sjoqvist E, Andersson L M, Ericsson M, Hessmo B, Singh K and Tong D 2012 Phys. Rev. A 86 062322
[23] Sjoqvist E, Tong D M, Andersson L M, Hessmo B, Johansson M and Singh K 2012 New J. Phys. 14 103035
[24] Solinas P, Zanardi P, Zanghí N and Rossi F 2003 Phys. Rev. B 67 121307
[25] Zhang J, Kyaw T H, Filipp S, Kwek L C, Sjoqvist E and Tong D 2023 Phys. Rep. 1027 1
[26] Zanardi P and Rasetti M 1999 Phys. Lett. A 264 94
[27] Zhang C, Chen T, Li S, Wang X and Xue Z Y 2020 Phys. Rev. A 101 052302
[28] Ma R L, Li A R, Wang C, Kong Z Z, Liao W Z, Ni M, Zhu S K, Chu N, Zhang C and Liu D 2024 Phys. Rev. Appl. 21 014044
[29] Pachos J, Zanardi P and Rasetti M 1999 Phys. Rev. A 61 010305
[30] Falci G, Fazio R, Palma G M, Siewert J and Vedral V 2000 Nature 407 355
[31] Duan L M, Cirac J I and Zoller P 2001 Science 292 1695
[32] Solinas P, Zanardi P, Zanghì N and Rossi F 2003 Phys. Rev. A 67 062315
[33] Toyoda K, Uchida K, Noguchi A, Haze S and Urabe S 2013 Phys. Rev. A 87 052307
[34] Wu H, Gauger E M, George R E, Mott onen M, Riemann H, Abrosimov N V, Becker P, Pohl H J, Itoh K M and Thewalt M L 2013 Phys. Rev. A 87 032326
[35] Berger S, Pechal M, Abdumalikov Jr A A, Eichler C, Steffen L, Fedorov A, Wallraff A and Filipp S 2013 Phys. Rev. A 87 060303
[36] Huang Y Y, Wu Y K, Wang F, Hou P Y, Wang W B, Zhang W G, Lian W Q, Liu Y Q, Wang H Y and Zhang H Y 2019 Phys. Rev. Lett. 122 010503
[37] Cai R, Li F G, Wang B C, Li H O, Cao G and Guo G P 2025 Phys. Rev. Appl. 23 024048
[38] Shao Q, Li P, Liu L, Yang H, Fukami S, Razavi A, Wu H, Wang K, Freimuth F and Mokrousov Y 2021 IEEE Trans. Magn. 57 1
[39] Holstein B R 1989 Am. J. Phys 57 1079
[40] Fukami S, Anekawa T, Zhang C and Ohno H 2016 Nat. Nanotechnol. 11 621
[41] Kong W, Wan C, Tao B, Fang C, Huang L, Guo C, Irfan M and Han X 2018 Appl. Phys. Lett. 113 162402
[42] Mazzolo A 2017 Journal of Mathematical Physics 58 093302
[43] Yang C H, Leon R, Hwang J, Saraiva A, Tanttu T, Huang W, Camirand Lemyre J, Chan K W, Tan K and Hudson F E 2020 Nature 580 350
[44] Camenzind L C, Geyer S, Fuhrer A, Warburton R J, Zumbuhl D M and Kuhlmann A V 2022 Nat. Electron. 5 178
[45] Yang J C, Li Z H, Wang B C, Li H O, Cao G and Guo G P 2023 Appl. Phys. Lett. 122 054001
[1] Interlayer exchange coupling effects on the spin-orbit torque in synthetic magnets
Haodong Fan(樊浩东), Zhongshu Feng(冯重舒), Tingwei Chen(陈亭伟), Xiaofeng Han(韩晓峰), Xinyu Shu(舒新愉), Mingzhang Wei(卫鸣璋), Shiqi Liu(刘士琦), Mengxi Wang(王梦溪), Shengru Chen(陈盛如), Xuejian Tang(唐学健), Menghao Jin(金蒙豪), Yungui Ma(马云贵), Bo Liu(刘波), and Tiejun Zhou(周铁军). Chin. Phys. B, 2025, 34(9): 098501.
[2] Recent progress on electron- and magnon-mediated torques
Jia-Min Lai(来嘉敏), Bingyue Bian(边冰玥), Zhonghai Yu(于忠海), Kaiwei Guo(郭凯卫), Yajing Zhang(张雅静), Pengnan Zhao(赵鹏楠), Xiaoqian Zhang(张霄倩), Chunyang Tang(汤春阳), Jiasen Cao(曹家森), Zhiyong Quan(全志勇), Fei Wang(王飞), and Xiaohong Xu(许小红). Chin. Phys. B, 2025, 34(10): 107501.
[3] Influence of exchange bias on spin torque ferromagnetic resonance for quantification of spin-orbit torque efficiency
Qian Zhao(赵乾), Tengfei Zhang(张腾飞), Bin He(何斌), Zimu Li(李子木), Senfu Zhang(张森富), Guoqiang Yu(于国强), Jianbo Wang(王建波), Qingfang Liu(刘青芳), and Jinwu Wei(魏晋武). Chin. Phys. B, 2024, 33(5): 058502.
[4] Spin-orbit torque effect in silicon-based sputtered Mn3Sn film
Sha Lu(卢莎), Dequan Meng(孟德全), Adnan Khan, Ziao Wang(王子傲), Shiwei Chen(陈是位), and Shiheng Liang(梁世恒). Chin. Phys. B, 2024, 33(10): 107501.
[5] Topological magnetotransport and electrical switching of sputtered antiferromagnetic Ir20Mn80
Danrong Xiong(熊丹荣), Yuhao Jiang(蒋宇昊), Daoqian Zhu(朱道乾), Ao Du(杜奥), Zongxia Guo(郭宗夏), Shiyang Lu(卢世阳), Chunxu Wang(王春旭), Qingtao Xia(夏清涛), Dapeng Zhu(朱大鹏), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2023, 32(5): 057501.
[6] Spin-orbit torque in perpendicularly magnetized [Pt/Ni] multilayers
Ying Cao(曹颖), Zhicheng Xie(谢志成), Zhiyuan Zhao(赵治源), Yumin Yang(杨雨民), Na Lei(雷娜), Bingfeng Miao(缪冰锋), and Dahai Wei(魏大海). Chin. Phys. B, 2023, 32(10): 107507.
[7] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[8] Switching plasticity in compensated ferrimagnetic multilayers for neuromorphic computing
Weihao Li(李伟浩), Xiukai Lan(兰修凯), Xionghua Liu(刘雄华), Enze Zhang(张恩泽), Yongcheng Deng(邓永城), and Kaiyou Wang(王开友). Chin. Phys. B, 2022, 31(11): 117106.
[9] Enhanced spin-orbit torque efficiency in Pt100-xNix alloy based magnetic bilayer
Congli He(何聪丽), Qingqiang Chen(陈庆强), Shipeng Shen(申世鹏), Jinwu Wei(魏晋武), Hongjun Xu(许洪军), Yunchi Zhao(赵云驰), Guoqiang Yu(于国强), and Shouguo Wang(王守国). Chin. Phys. B, 2021, 30(3): 037503.
[10] Giant interface spin-orbit torque in NiFe/Pt bilayers
Shu-Fa Li(李树发), Tao Zhu(朱涛). Chin. Phys. B, 2020, 29(8): 087102.
[11] Perpendicular magnetization switching by large spin—orbit torques from sputtered Bi2Te3
Zhenyi Zheng(郑臻益), Yue Zhang(张悦), Daoqian Zhu(朱道乾), Kun Zhang(张昆), Xueqiang Feng(冯学强), Yu He(何宇), Lei Chen(陈磊), Zhizhong Zhang(张志仲), Dijun Liu(刘迪军), Youguang Zhang(张有光), Pedram Khalili Amiri, Weisheng Zhao(赵巍胜). Chin. Phys. B, 2020, 29(7): 078505.
[12] Recent progress on excitation and manipulation of spin-waves in spin Hall nano-oscillators
Liyuan Li(李丽媛), Lina Chen(陈丽娜), Ronghua Liu(刘荣华), and Youwei Du(都有为). Chin. Phys. B, 2020, 29(11): 117102.
[13] Magnetization reorientation induced by spin–orbit torque in YIG/Pt bilayers
Ying-Yi Tian(田颖异), Shuan-Hu Wang(王拴虎), Gang Li(李刚), Hao Li(李豪), Shu-Qin Li(李书琴), Yang Zhao(赵阳), Xiao-Min Cui(崔晓敏), Jian-Yuan Wang(王建元), Lv-Kuan Zou(邹吕宽), and Ke-Xin Jin(金克新). Chin. Phys. B, 2020, 29(11): 117504.
[14] A review of current research on spin currents and spin-orbit torques
Xiao-Yu Feng(冯晓玉), Qi-Han Zhang(张琪涵), Han-Wen Zhang(张瀚文), Yi Zhang(张祎), Rui Zhong(钟瑞), Bo-Wen Lu(卢博文), Jiang-Wei Cao(曹江伟), Xiao-Long Fan(范小龙). Chin. Phys. B, 2019, 28(10): 107105.
[15] Unconventional geometric phase gate and multiqubit entanglement for hot ions with a frequency-modulated field
Zhong Wen-Xue(钟文学), Cheng Guang-Ling(程广玲), and Chen Ai-Xi(陈爱喜). Chin. Phys. B, 2010, 19(11): 110310.
No Suggested Reading articles found!