|
|
Unconventional geometric phase gate and multiqubit entanglement for hot ions with a frequency-modulated field |
Zhong Wen-Xue(钟文学), Cheng Guang-Ling(程广玲)†, and Chen Ai-Xi(陈爱喜) |
Department of Applied Physics, East China Jiaotong University, Nanchang 330013, China |
|
|
Abstract We present an alternative scheme for implementing the unconventional geometric two-qubit phase gate and preparing multiqubit entanglement by using a frequency-modulated laser field to simultaneously illuminate all ions. Selecting the index of modulation yields selective mechanisms for coupling and decoupling between the internal and the external states of the ions. By the selective mechanisms, we obtain the unconventional geometric two-qubit phase gate, multiparticle Greenberger–Horne–Zeilinger states and highly entangled cluster states. Our scheme is insensitive to the thermal motion of the ions.
|
Received: 14 October 2009
Revised: 01 July 2010
Accepted manuscript online:
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2005CB724508), the Scientific Research Foundation of Jiangxi Provincial Department of Education, China (Grant No. GJJ10133), and the Foundation of Talent of Jinggang of Jiangxi Province, China (Grant No. 2008DQ00400). |
Cite this article:
Zhong Wen-Xue(钟文学), Cheng Guang-Ling(程广玲), and Chen Ai-Xi(陈爱喜) Unconventional geometric phase gate and multiqubit entanglement for hot ions with a frequency-modulated field 2010 Chin. Phys. B 19 110310
|
[1] |
Deutsch D and Jozsa R 1992 Proc. R. Soc. A 439 553
|
[2] |
Zanardi P and Rasetti M 1999 Phys. Lett. A 264 94
|
[3] |
Berry M V 1984 Proc. R. Soc. London Ser. A 392% 45
|
[4] |
Aharonov and Anandan J 1987 Phys. Rev. Lett. 58 1593
|
[5] |
Carollo A, Fuentes-Guridi I, Santos M F and Vedral V 2003 % Phys. Rev. Lett. 90 160402
|
[6] |
Duan L M, Cirac J I and Zoller P 2001 Science 292 1695
|
[7] |
Jones J A, Vedral V, Ekert A and Castagnoli G 2000 Nature 403 869
|
[8] |
Falci G, Fazio R, Palma G M, Siewert J and Vedral V 2000 % Nature 407 355
|
[9] |
Wang X B and Keiji M 2001 Phys. Rev. Lett. 87 097901
|
[10] |
Zhu S L and Wang Z D 2003 Phys. Rev. A 67 022319
|
[11] |
Zhu S L, Wang Z D and Zanardi P 2005 Phys. Rev. Lett. 94 100502
|
[12] |
Chen C Y, Feng M, Zhang X L and Gao K L 2006 Phys. Rev. A 73 032344
|
[13] |
Xie H, Li H C, Yang R C, Lin X and Huang Z P 2007 Chin. Phys. 16 3382
|
[14] |
Feng X L, Wang Z S, Wu C F, Kwek L C, Lai C J and Ou C H 2007 Phys. Rev. A 75 052312
|
[15] |
Zhang Y Q, Jin X R and Zhang S 2008 Chin. Phys. B 17 424
|
[16] |
Shi Z G, Chen X W and Song K H 2009 J. Phys. B 42 % 035504
|
[17] |
Sorensen A and Molmer K 2000 Phys. Rev. A 62 022311
|
[18] |
Leibfried D, DeMarco B, Meyer V, Lucas D, Barrett M, Britton J, Itano W M, Jelenkovi'c B, Langer C, Rosenband T and Wineland D J 2003 Nature 422 412
|
[19] |
Du J F, Zou P and Wang Z D 2006 Phys. Rev. A 74 020302
|
[20] |
Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091
|
[21] |
Wu Y and Yang X X 1997 Phys. Rev. Lett. 78 3086
|
[22] |
Sackett C A, Kielpinski D, King B E, Langer C, Meyer V, Myatt C J, Rowe M, Turchette Q A, Itano W M, Wineland D J and Monroe C 2000 % Nature 404 256
|
[23] |
H"affner, H H"ansel W, Roos C F, Benhelm J, Chek-al-kar D, Chwalla M, K"orber T, Rapol U D, Riebe M, Schmidt P O, Becher C, G"uhne O, D"ur W and Blatt R 2005 Nature 438 643
|
[24] |
Schmidt-Kaler F, H"affner H, Riebe M, Gulde S, Lancaster G P T, Deuschle T, Becher C, Roos C F, Eschner J and Blatt R 2003 em Nature 422 408
|
[25] |
Briegel H J and Raussendorf R 2001 Phys. Rev. Lett. % 86 910
|
[26] |
Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. % 86 5188
|
[27] |
Agarwal G S and Harshawardhan W 1994 Phys. Rev. A 50% R4465
|
[28] |
Zhou D L, Zeng B, Xu Z and Sun C P 2003 Phys. Rev. A 68 062303
|
[29] |
Nielsen M A and Dawson C M 2005 Phys. Rev. A 71 042323
|
[30] |
Zheng S B 2006 Phys. Rev. A 73 065802
|
[31] |
Zheng X J, Xu H, Fang M F and Zhu K C 2010 Chin. Phys. B 19 034207
|
[32] |
Tanamoto T, Liu Y X, Fujita S, Hu X D and Nori F 2006 % Phys. Rev. Lett. 97 230501
|
[33] |
Lai B H, Du G, Yu Y F, Zhang Z M and Liu S H 2010 Acta Phys. Sin. 59 1017 (in Chinese)
|
[34] |
Kiesel N, Schmid C, Weber U, T'oth G, G"uhne O, Ursin R and Weinfurter H 2005 Phys. Rev. Lett. 95 210502
|
[35] |
N"agerl H C, Leibfried D, Rohde H, Thalhammer G, Eschner J, Schmidt-Kaler F and Blatt R 1999 Phys. Rev. A 60 145 endfootnotesize
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|