Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 103301    DOI: 10.1088/1674-1056/adf319
Special Issue: SPECIAL TOPIC — Ultrafast physics in atomic, molecular and optical systems
SPECIAL TOPIC — Ultrafast physics in atomic, molecular and optical systems Prev   Next  

Time-dependent quantum wave packet simulation for strong laser-induced molecular dynamics in multiple electronic states of H2 molecules

Jin-Peng Ma(马金鹏)1, Xiao-Qing Hu(胡晓青)1,†, Yong Wu(吴勇)1,2, and Jian-Guo Wang(王建国)1
1 National Key Laboratory of Computational Physics Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
2 HEDPS, Center of Applied Physics and Technology, Peking University, Beijing 100084, China
Abstract  We present a fully time-dependent quantum wave packet evolution method for investigating molecular dynamics in intense laser fields. This approach enables the simultaneous treatment of interactions among multiple electronic states while simultaneously tracking their time-dependent electronic, vibrational, and rotational dynamics. As an illustrative example, we consider neutral H$_2$ molecules and simulate the laser-induced excitation dynamics of electronic and rotational states in strong laser fields, quantitatively distinguishing the respective contributions of electronic dipole transitions (within the classical-field approximation) and non-resonant Raman processes to the overall molecular dynamics. Furthermore, we precisely evaluate the relative contributions of direct tunneling ionization from the ground state and ionization following electronic excitation in the strong-field ionization of H$_2$. The developed methodology shows strong potential for performing high-precision theoretical simulations of electronic-vibrational-rotational state excitations, ionization, and dissociation dynamics in molecules and their ions under intense laser fields.
Keywords:  time-dependent quantum wave packet evolution method      laser-induced excitation dynamics      electronic dipole transitions      non-resonant Raman processes      direct tunneling ionization      ionization following electronic excitation  
Received:  26 May 2025      Revised:  06 July 2025      Accepted manuscript online:  23 July 2025
PACS:  33.15.Mt (Rotation, vibration, and vibration-rotation constants)  
  33.20.Sn (Rotational analysis)  
  33.20.Wr (Vibronic, rovibronic, and rotation-electron-spin interactions)  
  32.80.-t (Photoionization and excitation)  
Fund: This work was supported by the National Key Research and Development Program of China (Grant No. 2022YFA1602502) and the National Natural Science Foundation of China (Grant No. 12450404).
Corresponding Authors:  Xiao-Qing Hu     E-mail:  xiaoqing-hu@foxmail.com

Cite this article: 

Jin-Peng Ma(马金鹏), Xiao-Qing Hu(胡晓青), Yong Wu(吴勇), and Jian-Guo Wang(王建国) Time-dependent quantum wave packet simulation for strong laser-induced molecular dynamics in multiple electronic states of H2 molecules 2025 Chin. Phys. B 34 103301

[1] Itatani J, Levesque J, Zeidler D, Niikura H, Pépin H, Kieffer J C, Corkum P B and Villeneuve D M 2004 Nature 432 867
[2] Zhai C, Zhu X, Lan P, Wang F, He L X, Shi W J, Li Y, Li M, Zhang Q B and Lu P X 2017 Phys. Rev. A 95 033420
[3] Zhai C Y, He L X, Lan P F, Zhu X S, Li Y, Wang F, Shi W J, Zhang Q B and Lu P X 2016 Sci. Rep. 6 23236
[4] Liu K and Barth I 2016 Phys. Rev. A 94 043402
[5] Baker S, Robinson J S, Haworth C A, Teng H, Smith R A, Chiril ? a C C, Lein M, Tisch J W G and Marangos J P 2006 Science 312 424
[6] Mercer I, Mevel E, Zerne R, L’ Huillier A, Antoine P and Wahlström C G 1996 Phys. Rev. Lett. 77 1731
[7] Hay N, Velotta R, Lein M, Nalda R D, Heesel E, Castillejo M and Marangos J P 2002 Phys. Rev. A 65 053805
[8] Yuan K J and Bandrauk A D 2018 Phys. Rev. A 98 023413
[9] Zuo T and Bandrauk A D 1995 Phys. Rev. A 52 R2511
[10] Posthumusy J H, Gilesy A J, Thompsony M R, Shaikhz W, Langley A J, Frasinski L J and Codling K 1996 J. Phys. B: At. Mol. Opt. Phys. 29 L525
[11] Seideman T 1995 J. Chem. Phys. 103 7887
[12] Seideman T 1999 Phys. Rev. Lett. 83 4971
[13] Yun S J, Kim C M, Lee J and Nam C H 2012 Phys. Rev. A 86 051401
[14] Giusti-Suzor A, He X, Atabek O and Mies F H 1990 Phys. Rev. Lett. 64 515
[15] Posthumus J H 2004 Rep. Prog. Phys. 67 623
[16] Ergler T, Rudenko A, Feuerstein B, Zrost K, Schröter C D, Moshammer R and Ullrich J 2006 Phys. Rev. Lett. 97 193001
[17] Chelkowski S, Bandrauk A D, Staudte A and Corkum P B 2007 Phys. Rev. A 76 013405
[18] Stapelfeldt H and Seideman T 2003 Rev. Mod. Phys. 75 543
[19] Lemeshko M and Friedrich B 2010 J. Phys. Chem. A 114 9848
[20] Koch C P, Lemeshko M and Sugny D 2019 Rev. Mod. Phys. 91 035005
[21] Xu T, Ma J P, Hu X Q, Tang Y S, Pei S Q, Jia C C, Wu Y and Wang J G 2025 Chin. Phys. B 34 053301
[22] Atkins P W and Friedman R S 2001 Molecular Quantum Mechanics, third edition (Oxford: Oxford University Press)
[23] Martinez T J, Ben-Nun M and Levine R D 1996 J. Phys. Chem. 100 7884
[24] Abanador P M and Thumm U 2020 Phys. Rev. A 102 053114
[25] Azarm A, Song D, Liu K, Hosseini S, Teranishi Y, Lin S H, Xia A, Kong F and Chin S L 2011 J. Phys. B: At. Mol. Opt. Phys. 44 085601
[26] Sanz-Vicario J L, Bachau H and Martín F 2006 Phys. Rev. A 73 033410
[27] Martín F, Fernández J, Havermeier T, Foucar L, Weber T, Kreidi K, Schoöffler M, Schmidt L, Jahnke T, Jagutzki O, Czasch A, Benis E P, Osipov T, Landers A L, Belkacem A, PriorMH, Schmidt-Boöcking H, Cocke C L and Dörner R 2007 Science 315 629
[28] Sturm F P, Tong X M, Palacios A, Wright T W, Zalyubovskaya I, Ray D, Shivaram N, Martín F, Belkacem A, Ranitovic P and Weber T 2017 Phys. Rev. A 95 012501
[29] Ranitovic P, Hoglea C W, Rivièrec P, Palacios A, Tong X M, Toshima N, González-Castrillo A, Martin L, Martín F, Murnane M M and Kapteyn H 2014 Proc. Natl. Acad. Sci. USA 111 912
[30] Sun T, Zhao L, Liu Y, Guo J, Lv H and Xu H F 2023 Phys. Rev. A 108 013120
[31] Borisova G D, Belda P B, Hu S Y, Birk P, Stoo V, Hartmann M, Fan D, Moshammer R, Saenz A, Ott C and Pfeifer T 2024 Phys. Rev. R 6 033326
[32] Bucksbaum P H, Zavriyev A, Muller H G and Schumacher D W 1990 Phys. Rev. Lett. 64 1883
[33] He F, Becker A and Thumm U 2008 Phys. Rev. Lett. 101 213002
[34] Nubbemeyer T, Eichmann U and Sandner W 2009 J. Phys. B: At. Mol. Opt. Phys. 42 134010
[35] Zohrabi M, McKenna J, Gaire B, Johnson N G, Carnes K D, De S, Bocharova I A, Magrakvelidze M, Ray D, Litvinyuk I V, Cocke C L and Ben-Itzhak I 2011 Phys. Rev. A 83 053405
[36] Magrakvelidze M, Aikens C M and Thumm U 2012 Phys. Rev. A 86 023402
[37] Wu J, Schmidt L Ph H, Kunitski M, Meckel M, Voss S, Sann H, Kim H, Jahnke T, Czasch A and Dörner R 2012 Phys. Rev. Lett. 108 183001
[38] Zhang W B, Li Z C, Lu P F, Gong X C, Song Q Y, Ji Q Y, Lin K, Ma J Y, He F, Zeng H P and Wu J 2016 Phys. Rev. Lett. 117 103002
[39] Werner H J, Knowles P J, Knizia G, et al. 2010 MOLPRO, a package of ab initio programs, version 2010.1. See http://www.molpro.net
[40] Dunning T H Jr 1989 J. Chem. Phys. 90 1007
[41] Reinsch M W 2000 J. Math. Phys. 41 2434
[42] Bialynicki-Birula I, Mielnik B and Plebański J 1969 Annals of Physics. 51 187
[43] Feit M D, Fleck J A and Steiger A 1982 Journal of Computational Physics 47 412
[44] NIST Computational Chemistry Comparison and Benchmark Database
[45] Tong X M, Zhao Z X and Lin C D 2002 Phys. Rev. A 66 033402
[46] Zhao S F, Jin C, Le A T, Jiang T F and Lin C D 2010 Phys. Rev. A 81 033423
[47] Keldysh L V 1965 Sov. Phys. JETP. 20 1307
[48] Staudte A, Patchkovskii S, Pavičić D, Akagi H, Smirnova O, Zeidler D, Meckel M, Villeneuve D M, Dörner R, Ivanov M Y and Corkum P B 2009 Phys. Rev. Lett. 102 033004
[1] Rotational dynamics of neutral O2 driven by linearly, elliptically and circularly polarized femtosecond pulsed lasers
Ting Xu(许婷), Jin-Peng Ma(马金鹏), Xiao-Qing Hu(胡晓青), Yin-Song Tang(唐寅淞), Si-Qi Pei(裴思琪), Cong-Cong Jia(贾聪聪), Yong-Wu(吴勇), and Jian-Guo Wang(王建国). Chin. Phys. B, 2025, 34(5): 053301.
[2] Spectroscopic and transition properties of strontium chloride
Dong-Lan Wu(伍冬兰), Bi-Kun Liu(刘必坤), Wen-Tao Zhou(周文涛), Jia-Yun Chen(陈佳运), Zhang-Li Lai(赖章丽), Bo Liu(刘波), and Bing Yan(闫冰). Chin. Phys. B, 2025, 34(4): 043101.
[3] Optical spectroscopy of CrO and electronic states of the Cr group metal monoxides
Lei Zhang(张磊), Yao Yu(于尧), Xinwen Ma(马新文), and Jie Yang(杨杰). Chin. Phys. B, 2023, 32(5): 053301.
[4] Line positions, intensities, and Einstein A coefficients for 3-0 band of 12C16O: A spectroscopy learning method
Zhi-Xiang Fan(范志祥), Zhi-Zhang Ni(倪志樟), Jie-Jie He(贺洁洁), Yi-Fan Wang(王一凡), Qun-Chao Fan(樊群超), Jia Fu(付佳), Yong-Gen Xu(徐勇根), Hui-Dong Li(李会东), Jie Ma(马杰), and Feng Xie(谢锋). Chin. Phys. B, 2021, 30(12): 123301.
[5] Imaging alignment of rotational state-selected CH3I molecule
Le-Le Song(宋乐乐), Yan-Hui Wang(王艳辉), Xiao-Chun Wang(王晓春), Hong-Tao Sun(孙洪涛), Lan-Hai He(赫兰海), Si-Zuo Luo(罗嗣佐), Wen-Hui Hu(胡文惠), Dong-Xu Li(李东旭), Wen-Hui Zhu(朱文会), Ya-Nan Sun(孙亚楠), Da-Jun Ding(丁大军), Fu-Chun Liu(刘福春). Chin. Phys. B, 2019, 28(2): 023101.
[6] Tracking coherent low frequency vibrational information of Rh101 in ground and excited electronic states by broadband transient grating spectroscopy
Wei Zhang(张伟), Xiao-Song Liu(刘小嵩), Zan-Hao Wang(王赞浩), Yun-Fei Song(宋云飞), Yan-Qiang Yang(杨延强). Chin. Phys. B, 2018, 27(12): 123301.
[7] Configuration interaction calculations on the spectroscopic and transition properties of magnesium chloride
Dong-lan Wu(伍冬兰), Cheng-quan Lin(林成泉), Yu-feng Wen(温玉锋), An-dong Xie(谢安东), Bing Yan(闫冰). Chin. Phys. B, 2018, 27(8): 083101.
[8] Enhancement of signal-to-noise ratio of ultracold polar NaCs molecular spectra by phase locking detection
Wenhao Wang(王文浩), Wenliang Liu(刘文良), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Xiaofeng Wang(王晓锋), Yanyan Liu(刘艳艳), Jie Ma(马杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2017, 26(12): 123701.
[9] Highly sensitive photoassociation spectroscopy of ultracold 23Na133Cs molecular long-range states below the 3S1/2+6P3/2 limit
Yanyan Liu(刘艳艳), Jizhou Wu(武寄洲), Wenliang Liu(刘文良), Xiaofeng Wang(王晓锋), Wenhao Wang(王文浩), Jie Ma(马杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2017, 26(12): 123702.
[10] Absorption spectra and isotope shifts of the (2, 0), (3, 1), and (8, 5) bands of the A2Πu–X2g+ system of 15N2+ in near infrared
Jia Ye(叶佳), Hailing Wang(汪海玲), Lunhua Deng(邓伦华). Chin. Phys. B, 2017, 26(10): 103102.
[11] Photoassociation spectra of ultracold 85Rb2 molecule in 0u+ long range state near the 5S1/2+5P1/2 asymptote
Guodong Zhao(赵国栋), Dianqiang Su(苏殿强), Zhonghua Ji(姬中华), Tengfei Meng(孟腾飞), Yanting Zhao(赵延霆), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2017, 26(8): 083301.
[12] Ab initio investigation of sulfur monofluoride and its singly charged cation and anion in their ground electronic state
Song Li(李松), Shan-Jun Chen(陈善俊), Yan Chen(陈艳), Peng Chen(陈朋). Chin. Phys. B, 2016, 25(3): 033101.
[13] Study on the A2Π3/2u, B2Δ3/2u, and X2Π3/2g states of Cl2+ including its isotopologues
Wu Ling (吴玲), You Su-Ping (尤素萍), Shao Xu-Ping (邵旭萍), Chen Gang-Jin (陈钢进), Ding Ning (丁宁), Wang You-Mei (汪友梅), Yang Xiao-Hua (杨晓华). Chin. Phys. B, 2015, 24(8): 083301.
[14] Infrared diode laser spectroscopy of O2–N2O van der Waals complex in the ν1 symmetric stretch region of N2O
Li Song (李松), Zheng Rui (郑锐), Duan Chuan-Xi (段传喜). Chin. Phys. B, 2014, 23(12): 123301.
[15] Further investigations of the low-lying electronic states of AsO+ radical
Zhu Zun-Lue (朱遵略), Qiao Hao (乔浩), Lang Jian-Hua (郎建华), Sun Jin-Feng (孙金锋). Chin. Phys. B, 2013, 22(10): 103102.
No Suggested Reading articles found!