|
Special Issue:
SPECIAL TOPIC — Ultrafast physics in atomic, molecular and optical systems
|
| SPECIAL TOPIC — Ultrafast physics in atomic, molecular and optical systems |
Prev
Next
|
|
|
Time-dependent quantum wave packet simulation for strong laser-induced molecular dynamics in multiple electronic states of H2 molecules |
| Jin-Peng Ma(马金鹏)1, Xiao-Qing Hu(胡晓青)1,†, Yong Wu(吴勇)1,2, and Jian-Guo Wang(王建国)1 |
1 National Key Laboratory of Computational Physics Institute of Applied Physics and Computational Mathematics, Beijing 100088, China; 2 HEDPS, Center of Applied Physics and Technology, Peking University, Beijing 100084, China |
|
|
|
|
Abstract We present a fully time-dependent quantum wave packet evolution method for investigating molecular dynamics in intense laser fields. This approach enables the simultaneous treatment of interactions among multiple electronic states while simultaneously tracking their time-dependent electronic, vibrational, and rotational dynamics. As an illustrative example, we consider neutral H$_2$ molecules and simulate the laser-induced excitation dynamics of electronic and rotational states in strong laser fields, quantitatively distinguishing the respective contributions of electronic dipole transitions (within the classical-field approximation) and non-resonant Raman processes to the overall molecular dynamics. Furthermore, we precisely evaluate the relative contributions of direct tunneling ionization from the ground state and ionization following electronic excitation in the strong-field ionization of H$_2$. The developed methodology shows strong potential for performing high-precision theoretical simulations of electronic-vibrational-rotational state excitations, ionization, and dissociation dynamics in molecules and their ions under intense laser fields.
|
Received: 26 May 2025
Revised: 06 July 2025
Accepted manuscript online: 23 July 2025
|
|
PACS:
|
33.15.Mt
|
(Rotation, vibration, and vibration-rotation constants)
|
| |
33.20.Sn
|
(Rotational analysis)
|
| |
33.20.Wr
|
(Vibronic, rovibronic, and rotation-electron-spin interactions)
|
| |
32.80.-t
|
(Photoionization and excitation)
|
|
| Fund: This work was supported by the National Key Research and Development Program of China (Grant No. 2022YFA1602502) and the National Natural Science Foundation of China (Grant No. 12450404). |
Corresponding Authors:
Xiao-Qing Hu
E-mail: xiaoqing-hu@foxmail.com
|
Cite this article:
Jin-Peng Ma(马金鹏), Xiao-Qing Hu(胡晓青), Yong Wu(吴勇), and Jian-Guo Wang(王建国) Time-dependent quantum wave packet simulation for strong laser-induced molecular dynamics in multiple electronic states of H2 molecules 2025 Chin. Phys. B 34 103301
|
[1] Itatani J, Levesque J, Zeidler D, Niikura H, Pépin H, Kieffer J C, Corkum P B and Villeneuve D M 2004 Nature 432 867 [2] Zhai C, Zhu X, Lan P, Wang F, He L X, Shi W J, Li Y, Li M, Zhang Q B and Lu P X 2017 Phys. Rev. A 95 033420 [3] Zhai C Y, He L X, Lan P F, Zhu X S, Li Y, Wang F, Shi W J, Zhang Q B and Lu P X 2016 Sci. Rep. 6 23236 [4] Liu K and Barth I 2016 Phys. Rev. A 94 043402 [5] Baker S, Robinson J S, Haworth C A, Teng H, Smith R A, Chiril ? a C C, Lein M, Tisch J W G and Marangos J P 2006 Science 312 424 [6] Mercer I, Mevel E, Zerne R, L’ Huillier A, Antoine P and Wahlström C G 1996 Phys. Rev. Lett. 77 1731 [7] Hay N, Velotta R, Lein M, Nalda R D, Heesel E, Castillejo M and Marangos J P 2002 Phys. Rev. A 65 053805 [8] Yuan K J and Bandrauk A D 2018 Phys. Rev. A 98 023413 [9] Zuo T and Bandrauk A D 1995 Phys. Rev. A 52 R2511 [10] Posthumusy J H, Gilesy A J, Thompsony M R, Shaikhz W, Langley A J, Frasinski L J and Codling K 1996 J. Phys. B: At. Mol. Opt. Phys. 29 L525 [11] Seideman T 1995 J. Chem. Phys. 103 7887 [12] Seideman T 1999 Phys. Rev. Lett. 83 4971 [13] Yun S J, Kim C M, Lee J and Nam C H 2012 Phys. Rev. A 86 051401 [14] Giusti-Suzor A, He X, Atabek O and Mies F H 1990 Phys. Rev. Lett. 64 515 [15] Posthumus J H 2004 Rep. Prog. Phys. 67 623 [16] Ergler T, Rudenko A, Feuerstein B, Zrost K, Schröter C D, Moshammer R and Ullrich J 2006 Phys. Rev. Lett. 97 193001 [17] Chelkowski S, Bandrauk A D, Staudte A and Corkum P B 2007 Phys. Rev. A 76 013405 [18] Stapelfeldt H and Seideman T 2003 Rev. Mod. Phys. 75 543 [19] Lemeshko M and Friedrich B 2010 J. Phys. Chem. A 114 9848 [20] Koch C P, Lemeshko M and Sugny D 2019 Rev. Mod. Phys. 91 035005 [21] Xu T, Ma J P, Hu X Q, Tang Y S, Pei S Q, Jia C C, Wu Y and Wang J G 2025 Chin. Phys. B 34 053301 [22] Atkins P W and Friedman R S 2001 Molecular Quantum Mechanics, third edition (Oxford: Oxford University Press) [23] Martinez T J, Ben-Nun M and Levine R D 1996 J. Phys. Chem. 100 7884 [24] Abanador P M and Thumm U 2020 Phys. Rev. A 102 053114 [25] Azarm A, Song D, Liu K, Hosseini S, Teranishi Y, Lin S H, Xia A, Kong F and Chin S L 2011 J. Phys. B: At. Mol. Opt. Phys. 44 085601 [26] Sanz-Vicario J L, Bachau H and Martín F 2006 Phys. Rev. A 73 033410 [27] Martín F, Fernández J, Havermeier T, Foucar L, Weber T, Kreidi K, Schoöffler M, Schmidt L, Jahnke T, Jagutzki O, Czasch A, Benis E P, Osipov T, Landers A L, Belkacem A, PriorMH, Schmidt-Boöcking H, Cocke C L and Dörner R 2007 Science 315 629 [28] Sturm F P, Tong X M, Palacios A, Wright T W, Zalyubovskaya I, Ray D, Shivaram N, Martín F, Belkacem A, Ranitovic P and Weber T 2017 Phys. Rev. A 95 012501 [29] Ranitovic P, Hoglea C W, Rivièrec P, Palacios A, Tong X M, Toshima N, González-Castrillo A, Martin L, Martín F, Murnane M M and Kapteyn H 2014 Proc. Natl. Acad. Sci. USA 111 912 [30] Sun T, Zhao L, Liu Y, Guo J, Lv H and Xu H F 2023 Phys. Rev. A 108 013120 [31] Borisova G D, Belda P B, Hu S Y, Birk P, Stoo V, Hartmann M, Fan D, Moshammer R, Saenz A, Ott C and Pfeifer T 2024 Phys. Rev. R 6 033326 [32] Bucksbaum P H, Zavriyev A, Muller H G and Schumacher D W 1990 Phys. Rev. Lett. 64 1883 [33] He F, Becker A and Thumm U 2008 Phys. Rev. Lett. 101 213002 [34] Nubbemeyer T, Eichmann U and Sandner W 2009 J. Phys. B: At. Mol. Opt. Phys. 42 134010 [35] Zohrabi M, McKenna J, Gaire B, Johnson N G, Carnes K D, De S, Bocharova I A, Magrakvelidze M, Ray D, Litvinyuk I V, Cocke C L and Ben-Itzhak I 2011 Phys. Rev. A 83 053405 [36] Magrakvelidze M, Aikens C M and Thumm U 2012 Phys. Rev. A 86 023402 [37] Wu J, Schmidt L Ph H, Kunitski M, Meckel M, Voss S, Sann H, Kim H, Jahnke T, Czasch A and Dörner R 2012 Phys. Rev. Lett. 108 183001 [38] Zhang W B, Li Z C, Lu P F, Gong X C, Song Q Y, Ji Q Y, Lin K, Ma J Y, He F, Zeng H P and Wu J 2016 Phys. Rev. Lett. 117 103002 [39] Werner H J, Knowles P J, Knizia G, et al. 2010 MOLPRO, a package of ab initio programs, version 2010.1. See http://www.molpro.net [40] Dunning T H Jr 1989 J. Chem. Phys. 90 1007 [41] Reinsch M W 2000 J. Math. Phys. 41 2434 [42] Bialynicki-Birula I, Mielnik B and Plebański J 1969 Annals of Physics. 51 187 [43] Feit M D, Fleck J A and Steiger A 1982 Journal of Computational Physics 47 412 [44] NIST Computational Chemistry Comparison and Benchmark Database [45] Tong X M, Zhao Z X and Lin C D 2002 Phys. Rev. A 66 033402 [46] Zhao S F, Jin C, Le A T, Jiang T F and Lin C D 2010 Phys. Rev. A 81 033423 [47] Keldysh L V 1965 Sov. Phys. JETP. 20 1307 [48] Staudte A, Patchkovskii S, Pavičić D, Akagi H, Smirnova O, Zeidler D, Meckel M, Villeneuve D M, Dörner R, Ivanov M Y and Corkum P B 2009 Phys. Rev. Lett. 102 033004 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|