| PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Pulse interval tunable terahertz radiation from electron beam-plasma interactions |
| Die Jian(简蝶)1, Jie Cai(蔡杰)2, Li-Qi Han(韩立琦)1, Xing-Yu Zhao(赵兴宇)1, Han Wen(温寒)1,†, and Jin-Qing Yu(余金清)1 |
1 Hunan Provincial Key Laboratory of High-Energy Scale Physics and Applications, School of Physics and Electronics, Hunan University, Changsha 410082, China; 2 State Key Laboratory of Nuclear Physics and Technology, Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871, China |
|
|
|
|
Abstract Terahertz (THz) radiation is rapidly emerging as a powerful tool with diverse applications, including high-speed imaging, laser-driven particle acceleration, and ultra-high frequency (UHF) communications. However, generating multi-pulse THz radiation with controllable time intervals remains a significant challenge. This study presents an approach to overcome this hurdle by exploiting the interaction between an electron beam and plasma. Using numerical simulations and theoretical analysis, we investigated the behavior of an electron beam within a plasma and its interaction with the longitudinal sheath field. This interaction resulted in the generation of multiple distinct THz pulses. We demonstrated that the plasma length adjustment allows for precise tuning of the interval between THz pulses. Moreover, the radiation intensity could be controlled by the electron beam energy and the electron bunch duration. The proposed scheme can generate multi-pulse THz radiation in a flexible and precise manner, paving the way for advancements in applications requiring high temporal resolution.
|
Received: 19 March 2025
Revised: 24 April 2025
Accepted manuscript online: 09 May 2025
|
|
PACS:
|
52.40.Mj
|
(Particle beam interactions in plasmas)
|
| |
52.59.-f
|
(Intense particle beams and radiation sources)
|
| |
52.65.Rr
|
(Particle-in-cell method)
|
| |
52.25.Os
|
(Emission, absorption, and scattering of electromagnetic radiation ?)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12175058) and the National Science Fund of Hunan Province for Distinguished Young Scholars (Grant No. 2024JJ2009). |
Corresponding Authors:
Han Wen
E-mail: hwen@hnu.edu.cn
|
Cite this article:
Die Jian(简蝶), Jie Cai(蔡杰), Li-Qi Han(韩立琦), Xing-Yu Zhao(赵兴宇), Han Wen(温寒), and Jin-Qing Yu(余金清) Pulse interval tunable terahertz radiation from electron beam-plasma interactions 2025 Chin. Phys. B 34 105201
|
[1] Siegel P H 2002 IEEE Transactions on microwave theory and techniques 50 910 [2] Dragoman D and Dragoman M 2004 Progress in Quantum Electronics 28 1 [3] Pawar A Y, Sonawane D D, Erande K B and Derle D V 2013 Drug Invention Today 5 157 [4] Kampfrath T, Tanaka K and Nelson K A 2013 Nat. Photon. 7 680 [5] Jepsen P U, Cooke D G and Koch M 2011 Laser Photon. Rev. 5 124 [6] Jiang W, Zhou Q, He J, Habibi M A, Melnyk S, El-Absi M, Han B, Renzo M D, Schotten H D, Luo F L, El-Bawab T S, Juntti M, Debbah M and Leung V C M 2024 IEEE Communications Surveys & Tutorials 26 2326 [7] Xue Q, Ji C, Ma S, Guo J, Xu Y, Chen Q and Zhang W 2024 IEEE Communications Surveys & Tutorials 26 1520 [8] Choi W J, Cheng G, Huang Z, Zhang S, Norris T B and Kotov N A 2019 Nature Materials 18 820 [9] Oh S J, Kim S H, Ji Y B, Jeong K, Park Y, Yang J, Park DW, Noh S K, Kang S G, Huh Y M, et al. 2014 Biomedical Optics Express 5 2837 [10] Pickwell E and Wallace V 2006 J. Phys. D: Appl. Phys. 39 R301 [11] Hamster H, Sullivan A, Gordon S, White W and Falcone R 1993 Phys. Rev. Lett. 71 2725 [12] Liao G, Li Y, Li C, Su L, Zheng Y, Liu M, Wang W, Hu Z, Yan W, Dunn J, et al. 2015 Phys. Rev. Lett. 114 255001 [13] Wang Y X, Shou Y R, Cai J, Han L Q, Geng Y X, Yu J Q and Yan X Q 2024 Phys. Plasmas 31 033111 [14] Wu Z, Fisher A S, Goodfellow J, Fuchs M, Daranciang D, Hogan M, Loos H and Lindenberg A 2013 Rev. Sci. Instrum. 84 022701 [15] Cai J, Shou Y, Han L, Huang R, Wang Y, Song Z, Geng Y, Yu J and Yan X 2022 Opt. Lett. 47 1658 [16] Kahaly S, Yadav S, Wang W, Sengupta S, Sheng Z, Das f A, Kaw P and Kumar G R 2008 Phys. Rev. Lett. 101 145001 [17] Liang Y, Liu Z, Tian Q, Li T, Lin X, Yan L, Du Y, Li R, Shi J, Cheng C, et al. 2023 Nat. Photon. 17 259 [18] Simpson T T, Pigeon J J, Miller K G, Ramsey D, Froula D H and Palastro J P 2024 Sci. Rep. 14 26587 [19] Liao G, Sun F, Lei H, Wang T, Wang D, Wei Y, Liu F, Wang X, Li Y and Zhang J 2024 Phys. Rev. Lett. 132 155001 [20] Ding W, Li F, Weng S, Bai P and Sheng Z 2019 arXiv preprint arXiv: 1902.04716 [21] Wang J, Zhang Z, Zhou S, Qin Z, Yu C, Cao Y, Lv Y, Chen J, Huang H, Liu W, et al. 2025 Laser Photon. Rev. 19 2400954 [22] Denoual E, Bergé L, Davoine X and Gremillet L 2023 Phys. Rev. E 108 065211 [23] Gorlova D A, Tsymbalov I N, Tsygvintsev I P and Savelev A B 2024 Laser Phys. Lett. 21 035001 [24] Liao G Q, Liu H, Scott G G, Zhang Y H, Zhu B J, Zhang Z, Li Y T, Armstrong C, Zemaityte E, Bradford P, et al. 2020 Phys. Rev. X 10 031062 [25] Kuratov A S, Brantov A V, Aliev YMand Bychenkov V Y 2016 Quantum Electron. 46 1023 [26] Herzer S, Woldegeorgis A, Polz J, Reinhard A, Almassarani M, Beleites B, Ronneberger F, Grosse R, Paulus G G, Hübner U, May T and Gopal A 2018 New J. Phys. 20 063019 [27] Garibian G M 1958 Soviet Journal of Experimental and Theoretical Physics 6 1079 [28] Zheng J, Tanaka K A, Miyakoshi T, Kitagawa Y, Kodama R, Kurahashi T and Yamanaka T 2003 Phys. Plasmas 10 2994 [29] Schroeder C B, Esarey E, van Tilborg J and Leemans W P 2004 Phys. Rev. E 69 016501 [30] Macchi A, Borghesi M and Passoni M 2013 Rev. Mod. Phys. 85 751 [31] Rusby D R, Armstrong C D, Scott G G, King M, McKenna P and Neely D 2019 High Power Laser Science and Engineering 7 e45 [32] Link A, Freeman R R, Schumacher D W and Van Woerkom L D 2011 Phys. Plasmas 18 053107 [33] Jin Z, Zhuo H B, Nakazawa T, Shin J H, Wakamatsu S, Yugami N, Hosokai T, Zou D B, Yu M Y, Sheng Z M and Kodama R 2016 Phys. Rev. E 94 033206 [34] Woldegeorgis A H, Beleites B, Ronneberger F, Grosse R and Gopal A 2018 Phys. Rev. E 98 061201 [35] Gopal A, Woldegeorgis A, Herzer S and Almassarani M 2019 Phys. Rev. E 100 053203 [36] Woldegeorgis A, Herzer S, Almassarani M, Marathapalli S and Gopal A 2019 Phys. Rev. E 100 053204 [37] Cai J, Shou Y, Geng Y, Han L, Xu X, Wen S, Shen B, Yu J and Yan X 2023 High Power Laser Science and Engineering 11 e90 [38] Liao G Q and Li Y T 2019 IEEE Trans. Plasma Sci. 47 3002 [39] Daido H, Nishiuchi M and Pirozhkov A S 2012 Rep. Prog. Phys. 75 056401 [40] Pukhov A and Meyer-ter Vehn J 1996 Phys. Rev. Lett. 76 3975 [41] Derouillat J, Beck A, Pérez F, Vinci T, Chiaramello M, Grassi A, Flé M, Bouchard G, Plotnikov I, Aunai N, et al. 2018 Comput. Phys. Commun. 222 351 [42] Bussolino G, Faenov A, Giulietti A, Giulietti D, Koester P, Labate L, Levato T, Pikuz T and Gizzi L 2013 J. Phys. D: Appl. Phys. 46 245501 [43] Falk K, Šmíd M, Boháček K, Chaulagain U, Gu Y, Pan X, Perez-Martin P, Krus M and Kozlová M 2023 Sci. Rep. 13 4252 [44] Ma W 2023 Nano Res. 16 12572 [45] Wang P, Qi G, Pan Z, Kong D, Shou Y, Liu J, Cao Z, Mei Z, Xu S, Liu Z, et al. 2021 High Power Laser Science and Engineering 9 e29 [46] Pan Z, Liu J, Wang P, Mei Z, Cao Z, Kong D, Xu S, Liu Z, Liang Y, Peng Z, Xu T, Song T, Chen X, Wu Q, Zhang Y, Han Q, Chen H, Zhao J, Gao Y, Chen S, Zhao Y, Yan X, Shou Y and Ma W 2024 Phys. Plasmas 31 043108 [47] Pak T, Rezaei-Pandari M, Kim S B, Lee G, Wi D H, Hojbota C I, Mirzaie M, Kim H, Sung J H, Lee S K, et al. 2023 Light: Science & Applications 12 37 [48] Ishak B 2018 Contemporary Physics 59 308 [49] Krainara S, Chatani S, Zen H, Kii T and Ohgaki H 2018 J. Phys.: Conf. Ser. 1067 032022 [50] Green B, Kovalev S, Asgekar V, Geloni G, Lehnert U, Golz T, Kuntzsch M, Bauer C, Hauser J, Voigtlaender J, et al. 2016 Sci. Rep. 6 22256 [51] Krasilnikov M, Aboulbanine Z, Adhikari G, Aftab N, Asoyan A, Boonpornprasert P, Davtyan H, Georgiev G, Good J, Grebinyk A, et al. 2025 Phys. Rev.: Accelerators and Beams 28 030701 [52] Ulbricht R, Hendry E, Shan J, Heinz T F and Bonn M 2011 Rev. Mod. Phys. 83 543 [53] Kleine-Ostmann T and Nagatsuma T 2011 Journal of Infrared, Millimeter, and Terahertz Waves 32 143 [54] Riccardi E, Pistore V, Kang S, Seitner L, De Vetter A, Jirauschek C, Mangeney J, Li L, Davies A G, Linfield E H, et al. 2023 Nat. Photon. 17 607 [55] Couture N, Lippl M, Cui W, Gamouras A, Joly N Y and Ménard J M 2024 Phys. Rev. Appl. 21 054020 [56] Fill E E 2001 Phys. Plasmas 8 4613 [57] Zhang Y, Wang C, Huai B, Wang S, Zhang Y, Wang D, Rong L and Zheng Y 2020 Appl. Sci. 11 71 [58] Damyanov D, Batra A, Friederich B, Kaiser T, Schultze T and Balzer J C 2020 IEEE Access 8 151997 [59] Pan Z, Liu J, Wang P, Mei Z, Cao Z, Kong D, Xu S, Liu Z, Liang Y, Peng Z, Xu T, Song T, Chen X, Wu Q, Zhang Y, Han Q, Chen H, Zhao J, Gao Y, Chen S, Zhao Y, Yan X, Shou Y and Ma W 2024 Phys. Plasmas 31 043108 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|