Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 105201    DOI: 10.1088/1674-1056/add67a
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Pulse interval tunable terahertz radiation from electron beam-plasma interactions

Die Jian(简蝶)1, Jie Cai(蔡杰)2, Li-Qi Han(韩立琦)1, Xing-Yu Zhao(赵兴宇)1, Han Wen(温寒)1,†, and Jin-Qing Yu(余金清)1
1 Hunan Provincial Key Laboratory of High-Energy Scale Physics and Applications, School of Physics and Electronics, Hunan University, Changsha 410082, China;
2 State Key Laboratory of Nuclear Physics and Technology, Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871, China
Abstract  Terahertz (THz) radiation is rapidly emerging as a powerful tool with diverse applications, including high-speed imaging, laser-driven particle acceleration, and ultra-high frequency (UHF) communications. However, generating multi-pulse THz radiation with controllable time intervals remains a significant challenge. This study presents an approach to overcome this hurdle by exploiting the interaction between an electron beam and plasma. Using numerical simulations and theoretical analysis, we investigated the behavior of an electron beam within a plasma and its interaction with the longitudinal sheath field. This interaction resulted in the generation of multiple distinct THz pulses. We demonstrated that the plasma length adjustment allows for precise tuning of the interval between THz pulses. Moreover, the radiation intensity could be controlled by the electron beam energy and the electron bunch duration. The proposed scheme can generate multi-pulse THz radiation in a flexible and precise manner, paving the way for advancements in applications requiring high temporal resolution.
Keywords:  electron beam      plasma      terahertz      particle-in-cell simulation  
Received:  19 March 2025      Revised:  24 April 2025      Accepted manuscript online:  09 May 2025
PACS:  52.40.Mj (Particle beam interactions in plasmas)  
  52.59.-f (Intense particle beams and radiation sources)  
  52.65.Rr (Particle-in-cell method)  
  52.25.Os (Emission, absorption, and scattering of electromagnetic radiation ?)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12175058) and the National Science Fund of Hunan Province for Distinguished Young Scholars (Grant No. 2024JJ2009).
Corresponding Authors:  Han Wen     E-mail:  hwen@hnu.edu.cn

Cite this article: 

Die Jian(简蝶), Jie Cai(蔡杰), Li-Qi Han(韩立琦), Xing-Yu Zhao(赵兴宇), Han Wen(温寒), and Jin-Qing Yu(余金清) Pulse interval tunable terahertz radiation from electron beam-plasma interactions 2025 Chin. Phys. B 34 105201

[1] Siegel P H 2002 IEEE Transactions on microwave theory and techniques 50 910
[2] Dragoman D and Dragoman M 2004 Progress in Quantum Electronics 28 1
[3] Pawar A Y, Sonawane D D, Erande K B and Derle D V 2013 Drug Invention Today 5 157
[4] Kampfrath T, Tanaka K and Nelson K A 2013 Nat. Photon. 7 680
[5] Jepsen P U, Cooke D G and Koch M 2011 Laser Photon. Rev. 5 124
[6] Jiang W, Zhou Q, He J, Habibi M A, Melnyk S, El-Absi M, Han B, Renzo M D, Schotten H D, Luo F L, El-Bawab T S, Juntti M, Debbah M and Leung V C M 2024 IEEE Communications Surveys & Tutorials 26 2326
[7] Xue Q, Ji C, Ma S, Guo J, Xu Y, Chen Q and Zhang W 2024 IEEE Communications Surveys & Tutorials 26 1520
[8] Choi W J, Cheng G, Huang Z, Zhang S, Norris T B and Kotov N A 2019 Nature Materials 18 820
[9] Oh S J, Kim S H, Ji Y B, Jeong K, Park Y, Yang J, Park DW, Noh S K, Kang S G, Huh Y M, et al. 2014 Biomedical Optics Express 5 2837
[10] Pickwell E and Wallace V 2006 J. Phys. D: Appl. Phys. 39 R301
[11] Hamster H, Sullivan A, Gordon S, White W and Falcone R 1993 Phys. Rev. Lett. 71 2725
[12] Liao G, Li Y, Li C, Su L, Zheng Y, Liu M, Wang W, Hu Z, Yan W, Dunn J, et al. 2015 Phys. Rev. Lett. 114 255001
[13] Wang Y X, Shou Y R, Cai J, Han L Q, Geng Y X, Yu J Q and Yan X Q 2024 Phys. Plasmas 31 033111
[14] Wu Z, Fisher A S, Goodfellow J, Fuchs M, Daranciang D, Hogan M, Loos H and Lindenberg A 2013 Rev. Sci. Instrum. 84 022701
[15] Cai J, Shou Y, Han L, Huang R, Wang Y, Song Z, Geng Y, Yu J and Yan X 2022 Opt. Lett. 47 1658
[16] Kahaly S, Yadav S, Wang W, Sengupta S, Sheng Z, Das f A, Kaw P and Kumar G R 2008 Phys. Rev. Lett. 101 145001
[17] Liang Y, Liu Z, Tian Q, Li T, Lin X, Yan L, Du Y, Li R, Shi J, Cheng C, et al. 2023 Nat. Photon. 17 259
[18] Simpson T T, Pigeon J J, Miller K G, Ramsey D, Froula D H and Palastro J P 2024 Sci. Rep. 14 26587
[19] Liao G, Sun F, Lei H, Wang T, Wang D, Wei Y, Liu F, Wang X, Li Y and Zhang J 2024 Phys. Rev. Lett. 132 155001
[20] Ding W, Li F, Weng S, Bai P and Sheng Z 2019 arXiv preprint arXiv: 1902.04716
[21] Wang J, Zhang Z, Zhou S, Qin Z, Yu C, Cao Y, Lv Y, Chen J, Huang H, Liu W, et al. 2025 Laser Photon. Rev. 19 2400954
[22] Denoual E, Bergé L, Davoine X and Gremillet L 2023 Phys. Rev. E 108 065211
[23] Gorlova D A, Tsymbalov I N, Tsygvintsev I P and Savelev A B 2024 Laser Phys. Lett. 21 035001
[24] Liao G Q, Liu H, Scott G G, Zhang Y H, Zhu B J, Zhang Z, Li Y T, Armstrong C, Zemaityte E, Bradford P, et al. 2020 Phys. Rev. X 10 031062
[25] Kuratov A S, Brantov A V, Aliev YMand Bychenkov V Y 2016 Quantum Electron. 46 1023
[26] Herzer S, Woldegeorgis A, Polz J, Reinhard A, Almassarani M, Beleites B, Ronneberger F, Grosse R, Paulus G G, Hübner U, May T and Gopal A 2018 New J. Phys. 20 063019
[27] Garibian G M 1958 Soviet Journal of Experimental and Theoretical Physics 6 1079
[28] Zheng J, Tanaka K A, Miyakoshi T, Kitagawa Y, Kodama R, Kurahashi T and Yamanaka T 2003 Phys. Plasmas 10 2994
[29] Schroeder C B, Esarey E, van Tilborg J and Leemans W P 2004 Phys. Rev. E 69 016501
[30] Macchi A, Borghesi M and Passoni M 2013 Rev. Mod. Phys. 85 751
[31] Rusby D R, Armstrong C D, Scott G G, King M, McKenna P and Neely D 2019 High Power Laser Science and Engineering 7 e45
[32] Link A, Freeman R R, Schumacher D W and Van Woerkom L D 2011 Phys. Plasmas 18 053107
[33] Jin Z, Zhuo H B, Nakazawa T, Shin J H, Wakamatsu S, Yugami N, Hosokai T, Zou D B, Yu M Y, Sheng Z M and Kodama R 2016 Phys. Rev. E 94 033206
[34] Woldegeorgis A H, Beleites B, Ronneberger F, Grosse R and Gopal A 2018 Phys. Rev. E 98 061201
[35] Gopal A, Woldegeorgis A, Herzer S and Almassarani M 2019 Phys. Rev. E 100 053203
[36] Woldegeorgis A, Herzer S, Almassarani M, Marathapalli S and Gopal A 2019 Phys. Rev. E 100 053204
[37] Cai J, Shou Y, Geng Y, Han L, Xu X, Wen S, Shen B, Yu J and Yan X 2023 High Power Laser Science and Engineering 11 e90
[38] Liao G Q and Li Y T 2019 IEEE Trans. Plasma Sci. 47 3002
[39] Daido H, Nishiuchi M and Pirozhkov A S 2012 Rep. Prog. Phys. 75 056401
[40] Pukhov A and Meyer-ter Vehn J 1996 Phys. Rev. Lett. 76 3975
[41] Derouillat J, Beck A, Pérez F, Vinci T, Chiaramello M, Grassi A, Flé M, Bouchard G, Plotnikov I, Aunai N, et al. 2018 Comput. Phys. Commun. 222 351
[42] Bussolino G, Faenov A, Giulietti A, Giulietti D, Koester P, Labate L, Levato T, Pikuz T and Gizzi L 2013 J. Phys. D: Appl. Phys. 46 245501
[43] Falk K, Šmíd M, Boháček K, Chaulagain U, Gu Y, Pan X, Perez-Martin P, Krus M and Kozlová M 2023 Sci. Rep. 13 4252
[44] Ma W 2023 Nano Res. 16 12572
[45] Wang P, Qi G, Pan Z, Kong D, Shou Y, Liu J, Cao Z, Mei Z, Xu S, Liu Z, et al. 2021 High Power Laser Science and Engineering 9 e29
[46] Pan Z, Liu J, Wang P, Mei Z, Cao Z, Kong D, Xu S, Liu Z, Liang Y, Peng Z, Xu T, Song T, Chen X, Wu Q, Zhang Y, Han Q, Chen H, Zhao J, Gao Y, Chen S, Zhao Y, Yan X, Shou Y and Ma W 2024 Phys. Plasmas 31 043108
[47] Pak T, Rezaei-Pandari M, Kim S B, Lee G, Wi D H, Hojbota C I, Mirzaie M, Kim H, Sung J H, Lee S K, et al. 2023 Light: Science & Applications 12 37
[48] Ishak B 2018 Contemporary Physics 59 308
[49] Krainara S, Chatani S, Zen H, Kii T and Ohgaki H 2018 J. Phys.: Conf. Ser. 1067 032022
[50] Green B, Kovalev S, Asgekar V, Geloni G, Lehnert U, Golz T, Kuntzsch M, Bauer C, Hauser J, Voigtlaender J, et al. 2016 Sci. Rep. 6 22256
[51] Krasilnikov M, Aboulbanine Z, Adhikari G, Aftab N, Asoyan A, Boonpornprasert P, Davtyan H, Georgiev G, Good J, Grebinyk A, et al. 2025 Phys. Rev.: Accelerators and Beams 28 030701
[52] Ulbricht R, Hendry E, Shan J, Heinz T F and Bonn M 2011 Rev. Mod. Phys. 83 543
[53] Kleine-Ostmann T and Nagatsuma T 2011 Journal of Infrared, Millimeter, and Terahertz Waves 32 143
[54] Riccardi E, Pistore V, Kang S, Seitner L, De Vetter A, Jirauschek C, Mangeney J, Li L, Davies A G, Linfield E H, et al. 2023 Nat. Photon. 17 607
[55] Couture N, Lippl M, Cui W, Gamouras A, Joly N Y and Ménard J M 2024 Phys. Rev. Appl. 21 054020
[56] Fill E E 2001 Phys. Plasmas 8 4613
[57] Zhang Y, Wang C, Huai B, Wang S, Zhang Y, Wang D, Rong L and Zheng Y 2020 Appl. Sci. 11 71
[58] Damyanov D, Batra A, Friederich B, Kaiser T, Schultze T and Balzer J C 2020 IEEE Access 8 151997
[59] Pan Z, Liu J, Wang P, Mei Z, Cao Z, Kong D, Xu S, Liu Z, Liang Y, Peng Z, Xu T, Song T, Chen X, Wu Q, Zhang Y, Han Q, Chen H, Zhao J, Gao Y, Chen S, Zhao Y, Yan X, Shou Y and Ma W 2024 Phys. Plasmas 31 043108
[1] Lasing and fluorescence of air plasma in presence of an external electric field
Kai-Lu Wang(王凯璐), Hai-Cheng Mei(梅海城), Liang Xu(许亮), and Yi Liu(刘一). Chin. Phys. B, 2025, 34(9): 093101.
[2] Twin pulses of THz generation from a nonlinear crystalline quartz by femtosecond laser pulse
Xiangmei Dong(董祥美), Dan-Ni Li(李丹妮), Zuan-Ming Jin(金钻明), Hui-Ping Zhang(张慧萍), Hong-Guang Li(李宏光), Shao-Hui Wu(吴少晖), Yan Peng(彭滟), Yiming Zhu(朱亦鸣), and Songlin Zhuang(庄松林). Chin. Phys. B, 2025, 34(9): 094211.
[3] Ultrafast electron transport in 2D van der Waals heterostructures Bi2Te3/Fe4GeTe2 probed by terahertz spectroscopy
Hui-Xiang Hong(洪晖祥), Yun Sun(孙芸), Jing Li(李竞), Jing-Yi Peng(彭静宜), Hui-Ping Zhang(张慧萍), Hong-Guang Li(李宏光), Shao-Hui Wu(吴少晖), Tian-Xiao Nie(聂天晓), Yan Peng(彭滟), and Zuan-Ming Jin(金钻明). Chin. Phys. B, 2025, 34(7): 077304.
[4] Relativistic terahertz laser pulse from photon deceleration in a plasma wakefield
Jie Cai(蔡杰), Minjian Wu(吴旻剑), Yixing Geng(耿易星), Huangang Lu(卢寰港), Han Wen(温寒), Liqi Han(韩立琦), Yanying Zhao(赵研英), Jinqing Yu(余金清), and Xueqing Yan(颜学庆). Chin. Phys. B, 2025, 34(6): 063201.
[5] Tunable working bandwidth terahertz switch based on magnetic valley photonic crystal
Mingxia Hou(侯铭霞), Hongming Fei(费宏明), Han Lin(林瀚), and Mingda Zhang(张明达). Chin. Phys. B, 2025, 34(5): 058702.
[6] Molecular dynamics evaluation of self-diffusion coefficients in two-dimensional dusty plasmas
Muhammad Asif Shakoori, Misbah Khan, Haipeng Li(李海鹏), Aamir Shahzad, Maogang He(何茂刚), and Syed Ali Raza. Chin. Phys. B, 2025, 34(4): 045202.
[7] Broadband polarization-independent terahertz multifunctional liquid crystal coding metasurface based on topological optimization
Yu Chen(陈羽), Wu-Hao Cao(曹吴昊), Jia-Qi Li(李嘉琦), Ming-Zhe Zhang(张明哲), Xin-Yi Du(杜欣怡), Ding-Shan Gao(郜定山), and Pei-Li Li(李培丽). Chin. Phys. B, 2025, 34(4): 044205.
[8] Three-dimensional simulations of RF wave propagation and power coupling in cold magnetized plasma near an ICRF antenna
Lei-Yu Zhang(张雷宇), Yi-Xuan Li(李屹轩), and Quan-Zhi Zhang(张权治). Chin. Phys. B, 2025, 34(2): 025204.
[9] Experimental study on performance of 100-kW low temperature superconducting steady-state magnetoplasmadynamic thruster
Cheng Zhou(周成), Peng Wu(吴鹏), Yun-Tao Song(宋云涛), Jin-Xing Zheng(郑金星), Yong Li(李永), Ge Wang(王戈), and Hai-Yang Liu(刘海洋). Chin. Phys. B, 2025, 34(2): 025201.
[10] Temporal variation characteristics of cathode temperature in a magnetoplasmadynamic thruster
Cheng Zhou(周成), Peng Wu(吴鹏), Yun-Tao Song(宋云涛), Jin-Xing Zheng(郑金星), Yong Li(李永), Ge Wang(王戈), and Hai-Yang Liu(刘海洋). Chin. Phys. B, 2025, 34(2): 025202.
[11] An experimental study on the magnetic field permeability of an inductive-pulsed plasma thruster
Bi-Xuan Che(车碧轩), Jian-Jun Wu(吴建军), Mou-Sen Cheng(程谋森), Xiao-Kang Li(李小康), Yu Zhang(张宇), and Da-Wei Guo(郭大伟). Chin. Phys. B, 2025, 34(2): 025203.
[12] Turbulent drag reduction by sector-shaped counter-flow dielectric barrier discharge plasma actuator
Borui Zheng(郑博睿), Shaojie Qi(齐少杰), Minghao Yu(喻明浩), Jianbo Zhang(张剑波), Linwu Wang(王林武), and Dongliang Bian(卞栋梁). Chin. Phys. B, 2025, 34(2): 025205.
[13] One-dimensional theoretical analysis on charged-particle transports in a decaying plasma with an initial plasma–electrode gap
Xin-Li Sun(孙鑫礼), Yao-Ting Wang(汪耀庭), Lan-Yue Luo(罗岚月), Zi-Ming Zhang(张子明), Meng-Long Zhang(张梦龙), He-Ping Li(李和平), Dong-Jun Jiang(姜东君), and Ming-Sheng Zhou(周明胜). Chin. Phys. B, 2025, 34(11): 115201.
[14] Effect of the confinement on two-dimensional complex plasmas with the shear force
Haoyu Qi(齐颢与), Yang Liu(刘阳), Shaohuang Bian(卞少皇), Runing Liang(梁儒宁), Dan Zhang(张丹), and Feng Huang(黄峰). Chin. Phys. B, 2025, 34(10): 105203.
[15] Non-uniform electron density estimation based on electromagnetic wave attenuation in plasma
Zhaoying Wang(王召迎), Lixin Guo(郭立新), Maixia Fu(付麦霞), Shaoshuai Guo(郭韶帅), and Yinsheng Li(李寅生). Chin. Phys. B, 2025, 34(1): 015201.
No Suggested Reading articles found!