PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Three-dimensional simulations of RF wave propagation and power coupling in cold magnetized plasma near an ICRF antenna |
Lei-Yu Zhang(张雷宇), Yi-Xuan Li(李屹轩), and Quan-Zhi Zhang(张权治)† |
School of Physics, Dalian University of Technology, Dalian 116024, China |
|
|
Abstract The electromagnetic wave propagations and their coupling characteristics in magnetized plasma near the antenna of ion cyclotron range of frequencies (ICRF) is studied based on self-developed 3DFEM-IA code. This code effectively resolves the three-dimensional (3D) geometry and the electromagnetic field using the finite element method. Our findings reveal that the distributions of electromagnetic fields and energy flow density significantly depend on the antenna phases, surface current density on the antenna straps, and background plasma density. Notably, the non-uniform surface current density on the antenna straps, resulting from the presence of induced currents, contributes to a reduction in coupling power within the edge plasma. Furthermore, the calculated coupling impedance increases with plasma density, corroborating well with experimental measurements.
|
Received: 29 October 2024
Revised: 02 December 2024
Accepted manuscript online: 05 December 2024
|
PACS:
|
52.25.Xz
|
(Magnetized plasmas)
|
|
52.40.Fd
|
(Plasma interactions with antennas; plasma-filled waveguides)
|
|
52.50.Qt
|
(Plasma heating by radio-frequency fields; ICR, ICP, helicons)
|
|
52.65.-y
|
(Plasma simulation)
|
|
Fund: Project supported by the National MCF Energy Research and Development Program (Grant No. 2022YFE03190100), the National Natural Science Foundation of China (Grant Nos. 12422513, 12105035, and U21A20438), and the Xiaomi Young Talents Program. |
Corresponding Authors:
Quan-Zhi Zhang
E-mail: qzzhang@dlut.edu.cn
|
Cite this article:
Lei-Yu Zhang(张雷宇), Yi-Xuan Li(李屹轩), and Quan-Zhi Zhang(张权治) Three-dimensional simulations of RF wave propagation and power coupling in cold magnetized plasma near an ICRF antenna 2025 Chin. Phys. B 34 025204
|
[1] Porkolab M, Bécoulet A, Bonoli P T, Gormezano C, Koch R, Majeski R J, Messiaen A, Noterdaeme J M, Petty C, Pinsker R, Start D and Wilson R 1998 Plasma Phys. Control. Fusion 40 A35 [2] Yin L, Yang C, Gong X Y, Lu X Q, Du D and Chen Y 2017 Phys. Plasmas 24 102502 [3] Yang H, Zhang X J, Qin C M, Zhao Y P, Yuan S, Mao Y Z, Yang X, Li M H, Urbanczyk G, Wang M, Wang X J, Xu H D, Ding B J, Li Y C, Xu G S, Hu L Q, Ai L and Guo Y Y 2021 Nucl. Fusion 61 035001 [4] Clairet F, Colas L, Heuraux S and Lombard G 2004 Plasma Phys. Control. Fusion 46 1567 [5] Jacquet P, Bobkov V, Mayoral M L, Monakhov I, Noterdaeme J M, Scarabosio A, Stepanov I, Vrancken M, Wolfrum E and the ASDEX Upgrade Team 2012 Nucl. Fusion 52 042002 [6] Carter M D, Wang C Y, Hogan J T, Harris J H, Hoffman D J, Rasmussen D A, Ryan P M, Stallings D S, Batchelor D B, Beaumont B, Hutter T and Saoutic B 1996 AIP Conf. Proc. 355 364 [7] Milanesio D, Helou W, Polli V, Durodié F, Lamalle P, Louche F and Zhang W 2023 AIP Conf. Proc. 2984 060008 [8] Jacquot J, Colas L, Clairet F, Goniche M, Heuraux S, Hillairet J, Lombard G and Milanesio D 2013 Plasma Phys. Control. Fusion 55 115004 [9] Usoltceva M, Tierens W, Kostic A, Noterdaeme J M, Ochoukov R and Zhang W 2020 AIP Conf. Proc. 2254 050003 [10] Tierens W, Milanesio D, Urbanczyk G, Helou W, Bobkov V, Noterdaeme J M, Colas L, Maggiora R, the ASDEX Upgrade Team and the EUROfusion MST1 Team 2019 Nucl. Fusion 59 046001 [11] Qin C M, Zhang X J, Zhao Y P,Wan B N, Braun F,Wang L, Yang Q X, Yuan S, Cheng Y and ICRF team on EAST 2015 Plasma Sci. Technol. 17 167 [12] Yang H,Wu C F, Dong S, Zhao Y P, Zhang X J and Shang L 2016 Nucl. Sci. Tech. 27 46 [13] Zhong G Q, Cao H R, Hu L Q, Zhou R J, Xiao M, Li K, Pu N, Huang J, Liu G Z, Lin S Y, Lyu B, Liu H Q, Zhang X J and EAST Team 2016 Plasma Phys. Control. Fusion 58 075013 [14] Zhou L, BeckWK, Koert P, Doody J, Vieira R F,Wukitch S J, Granetz R S, Irby J H, Yang Q X, Qin C M, Zhang X J and Zhao Y P 2016 IEEE Trans. Plasma Sci. 44 1731 [15] Zhang W, Liu L N, Zhang X J, Qin X M, Yang H and the EAST Team 2024 Nucl. Fusion 64 096011 [16] Colas L, Jacquot J, Hillairet J, Helou W, Tierens W, Heuraux S, Faudot E, Lu L and Urbanczyk G 2019 Journal of Computational Physics 389 94 [17] Harrington R F 1968 Field Computation by Moment Methods. Macmillan (IEEE Operations Center) [18] Rao S M, Wilton D R and Glisson A W 1982 IEEE Trans. Anten. Propag. AP-30 409 [19] Li J H, Yang Q X, Song Y T, Yu C, Chen S L, Xu H and Du D 2021 J. Nucl. Sci. Technol. 58 837 [20] Bhatnagar V P, Koch R, Messiaen A M and Weynants R R 1982 Nucl. Fusion 22 280 [21] Lerche E, Bobkov V, Jacquet P, Mayoraf M L, Messiaen A, Monakhov I, Ongena J, Telesca G, Van Eester D, Weynants R R and JET-EFDA Contributors 2009 AIP Conf. Proc. 1187 93 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|