Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 015201    DOI: 10.1088/1674-1056/ad9454
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Non-uniform electron density estimation based on electromagnetic wave attenuation in plasma

Zhaoying Wang(王召迎)1,2,†, Lixin Guo(郭立新)3,‡, Maixia Fu(付麦霞)1,2, Shaoshuai Guo(郭韶帅)1,2, and Yinsheng Li(李寅生)1,2
1 Key Laboratory of Grain Information Processing and Control (Henan University of Technology), Ministry of Education, Zhengzhou 450001, China;
2 College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China;
3 School of Physics, Xidian University, Xi'an 710071, China
Abstract  The surface of a high-speed vehicle reentering the atmosphere is surrounded by plasma sheath. Due to the influence of the inhomogeneous flow field around the vehicle, understanding the electromagnetic properties of the plasma sheath can be challenging. Obtaining the electron density of the plasma sheath is crucial for understanding and achieving plasma stealth of vehicles. In this work, the relationship between electromagnetic wave attenuation and electron density is deduced theoretically. The attenuation distribution along the propagation path is found to be proportional to the integral of the plasma electron density. This result is used to predict the electron density profile. Furthermore, the average electron density is obtained using a back-propagation neural network algorithm. Finally, the spatial distribution of the electron density can be determined from the average electron density and the normalized derivative of attenuation with respect to the propagation depth. Compared to traditional probe measurement methods, the proposed approach not only improves efficiency but also preserves the integrity of the plasma environment.
Keywords:  attenuation      electromagnetic propagation      plasma      electron density  
Received:  17 June 2024      Revised:  05 November 2024      Accepted manuscript online:  19 November 2024
PACS:  52.40.Kh (Plasma sheaths)  
  94.30.Tz (Electromagnetic wave propagation)  
  98.58.Ay (Physical properties (abundances, electron density, magnetic fields, scintillation, scattering, kinematics, dynamics, turbulence, etc.))  
  42.25.Dd (Wave propagation in random media)  
Fund: Project supported by the Natural Science Foundation of Henan Province, China (Grant No. 242300420634), the Cultivative Plan of Henan University of Technology (Grant No. 2024PYJH035), the Research Foundation for Advanced Talents of Henan University of Technology (Grant Nos. 2022BS067 and 2022BS068), the National Natural Science Foundation of China (Grant No. 62301211), the Key Research and Development and Promotion Special Project (Science and Technology Research) in Henan Province, China (Grant No. 232102211068), and the Innovative Funds Plan of Henan University of Technology (Grant No. 2022ZKCJ15).
Corresponding Authors:  Zhaoying Wang, Lixin Guo     E-mail:  zywang921@163.com;lxguo@xidian.edu.cn

Cite this article: 

Zhaoying Wang(王召迎), Lixin Guo(郭立新), Maixia Fu(付麦霞), Shaoshuai Guo(郭韶帅), and Yinsheng Li(李寅生) Non-uniform electron density estimation based on electromagnetic wave attenuation in plasma 2025 Chin. Phys. B 34 015201

[1] Liu J F, Xi X L,Wan G B andWang L L 2011 IEEE Trans. Plasma Sci. 39 852
[2] Bai B W, Li X P, Liu Y M, Xu J, Shi L and Xie K 2014 IEEE Trans. Plasma Sci. 42 3365
[3] Chen W, Guo L X and Li J T 2017 Phys. Plasmas 24 042102
[4] Yao B, Shi L, Li X,Wei H and Liu Y 2022 IEEE Trans. Plasma Sci. 50 2430
[5] Guo S S, Xie K, Xu H, FuMX and Niu Y Y 2023 Plasma Sci. Technol. 25 065401
[6] Liu Z W, Bao W M, Li X P, Liu D L and Bai B W 2015 IEEE Trans. Plasma Sci. 43 3147
[7] Wang Z Y, Guo L X and Li J T 2021 Plasma Sci. Technol. 23 075001
[8] Joo Hwa L and Kalluri D K 1999 IEEE Trans. Antenn. Propag. 47 1146
[9] Laroussi M and Roth J R 1993 IEEE Trans. Plasma Sci. 21 366
[10] Chen W, Yang L X, Huang Z X and Guo L X 2019 J. Quantum Spectrosc Rad. Transf. 232 66
[11] Wang Z Y, Guo L X, Dan L and Li J T 2019 IEEE Trans. Plasma Sci. 47 3978
[12] Chen W, Guo L X, Li J T and Liu S H 2016 IEEE Trans. Plasma Sci. 44 3235
[13] Ryan P J, Bradley J W and Bowden M D 2019 Phys. Plasmas 26 040702
[14] Shneider M N and Miles R B 2005 J. Appl. Phys. 98 033301
[15] Garland J M, Tauscher G, Bohlen S, Boyle G J, D’Arcy R, Goldberg L, Poder K, Schaper L, Schmidt B and Osterhoff J 2021 Rev. Sci. Instrum. 92 013505
[16] Berchtikou A, Lavoie J, Poenariu V, Saoudi B, Kashyap R and Wertheimer M R 2011 IEEE Trans. Dielect. El. In. 18 24
[17] Statom T K 2018 IEEE Trans. Plasma Sci. 46 494
[18] Wei Z and Chen X D 2019 IEEE Trans. Geosci. Remote. 57 1849
[19] Li L L, Wang L G, Teixeira F L, Liu C, Nehorai A and Cui T J 2019 IEEE Trans. Antenn. Propag. 67 1819
[20] Zhang Y Y, Fu H Y and Sui Y 2020 IEEE Trans. Plasma Sci. 48 2143
[21] Guo B and Wang X G 2005 Phys. Plasmas 12 084506
[22] Du Y X, Li C L and Qin L 2017 IEEE Trans. Plasma Sci. 45 3182
[23] Guo X M, Li H Y, Bo Y, Chen W, Yang L X, Huang Z X and Wang A Q 2024 Appl. Comput. Electrom. 39 156
[24] Gao Y, Yang M, Xie K, Qiao L, Liu H, Li C, Liu D, Quan L,Wu M and Li X 2024 Phys. Plasmas 31 023505
[25] Buscema M 1998 Subst Use Misuse 33 233
[26] Lu Q, Yang R, ZhongMandWang Y 2020 IEEE Trans. Instrum. Meas. 69 1585
[27] Shi S, Zhou K, Zhao J, Mukherjee S and Zhuang P 2022 Phys. Rev. D 105 014017
[28] Cui K and Jing X 2019 Neural Comput. Appl. 31 8205
[29] Wang D, Luo H, Grunder O, Lin Y and Guo H 2017 Appl. Energy 190 390
[30] Sun W and Huang C 2020 J. Clean Prod. 243 118671
[1] Observation of Weibel magnetic fields in laser-produced interpenetrating flows
Chuanqi Shi(施川奇), Dawei Yuan(袁大伟), Wei Sun(孙伟), Yapeng Zhang(张雅芃), Zhijie Qiu(邱志杰), Huigang Wei(魏会冈), Zhe Zhang(张喆), Xiaohui Yuan(远晓辉), and Gang Zhao(赵刚). Chin. Phys. B, 2025, 34(1): 015203.
[2] Experimental study on performance of 100-kW low temperature superconducting steady-state magnetoplasmadynamic thruster
Cheng Zhou(周成), Peng Wu(吴鹏), Yun-Tao Song(宋云涛), Jin-Xing Zheng(郑金星), Yong Li(李永), Ge Wang(王戈), and Hai-Yang Liu(刘海洋). Chin. Phys. B, 2025, 34(1): 025201.
[3] Tunable energy spectrum betatron x-ray sources in a plasma wakefield
Chuan-Yi Xi(奚传易), Yin-Ren Shou(寿寅任), Li-Qi Han(韩立琦), Abdughupur Ablimit(阿卜杜伍普尔·阿布力米提), Xiao-Dan Liu(刘晓丹), Yan-Ying Zhao(赵研英), and Jin-Qing Yu(余金清). Chin. Phys. B, 2024, 33(8): 085202.
[4] Quasi-three-dimensional hydrodynamics of the corona region of laser irradiation of a slab
Xiao-Mei Dong(董晓梅), Ben-Jin Guan(关本金), and Ying-Jun Li(李英骏). Chin. Phys. B, 2024, 33(8): 085203.
[5] Spectral characteristics of laser-plasma instabilities with a broadband laser
Guo-Xiao Xu(许国潇), Ning Kang(康宁), An-Le Lei(雷安乐), Hui-Ya Liu(刘会亚), Yao Zhao(赵耀), Shen-Lei Zhou(周申蕾), Hong-Hai An(安红海), Jun Xiong(熊俊), Rui-Rong Wang(王瑞荣), Zhi-Yong Xie(谢志勇), Xi-Chen Zhou(周熙晨), Zhi-Heng Fang(方智恒), and Wei Wang(王伟). Chin. Phys. B, 2024, 33(8): 085204.
[6] Power transfer efficiency in an air-breathing radio frequency ion thruster
Gao-Huang Huang(黄高煌), Hong Li(李宏), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2024, 33(7): 075201.
[7] Divergence angle consideration in energy spread measurement for high-quality relativistic electron beam in laser wakefield acceleration
Guang-Wei Lu(卢光伟), Yao-Jun Li(李曜均), Xi-Chen Hu(胡曦辰), Si-Yu Chen(陈思宇), Hao Xu(徐豪), Ming-Yang Zhu(祝铭阳), Wen-Chao Yan(闫文超), and Li-Ming Chen(陈黎明). Chin. Phys. B, 2024, 33(6): 064101.
[8] Effect of trace oxygen on plasma nitriding of titanium foil
Hai-Tao Zhou(周海涛), Xi-Ya Xiong(熊希雅), Ke-Xin Ma(马可欣), Bing-Wei Luo(罗炳威), Fei Luo(罗飞), and Cheng-Min Shen(申承民). Chin. Phys. B, 2024, 33(6): 068103.
[9] Velocity analysis of supersonic jet flow in double-cone ignition scheme
Zhong-Yuan Zhu(朱仲源), Cheng-Long Zhang(张成龙), and Ying-Jun Li(李英骏). Chin. Phys. B, 2024, 33(6): 065203.
[10] Low-frequency hybridized excess vibrations of two-dimensional glasses
Licun Fu(付立存), Yiming Zheng(郑一鸣), and Lijin Wang(王利近). Chin. Phys. B, 2024, 33(5): 056401.
[11] Model of self-generated magnetic field generation from relativistic laser interaction with solid targets
Rui Yan(严睿), De-Bin Zou(邹德滨), Na Zhao(赵娜), Xiao-Hu Yang(杨晓虎), Xiang-Rui Jiang(蒋祥瑞), Li-Xiang Hu(胡理想), Xin-Rong Xu(徐新荣), Hong-Yu Zhou(周泓宇), Tong-Pu Yu(余同普), Hong-Bin Zhuo(卓红斌), Fu-Qiu Shao(邵福球), and Yan Yin(银燕). Chin. Phys. B, 2024, 33(5): 055203.
[12] Characteristics of the electromagnetic wave propagation in magnetized plasma sheath and practical method for blackout mitigation
Xiang Wu(吴翔), Jiahui Zhang(张珈珲), Guoxiang Dong(董果香), and Lei Shi(石磊). Chin. Phys. B, 2024, 33(5): 055201.
[13] Diagnosing ratio of electron density to collision frequency of plasma surrounding scaled model in a shock tube using low-frequency alternating magnetic field phase shift
Ming-Xing Wu(吴明兴), Kai Xie(谢楷), Yan Liu(刘艳), Han Xu(徐晗), Bao Zhang(张宝), and De-Yang Tian(田得阳). Chin. Phys. B, 2024, 33(5): 055204.
[14] Probing the peripheral self-generated magnetic field distribution in laser-plasma magnetic reconnection with Martin—Puplett interferometer polarimeter
Ya-Peng Zhang(张雅芃), Jia-Wen Yao(姚嘉文), Zheng-Dong Liu(刘正东), Zuo-Lin Ma(马作霖), and Jia-Yong Zhong(仲佳勇). Chin. Phys. B, 2024, 33(4): 045206.
[15] Influence of extraction voltage on electron and ion behavior characteristics
Ao Xu(徐翱), Pingping Gan(甘娉娉), Yuanjie Shi(石元杰), and Lei Chen(陈磊). Chin. Phys. B, 2024, 33(4): 045203.
No Suggested Reading articles found!