Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 025205    DOI: 10.1088/1674-1056/ada1c6
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Turbulent drag reduction by sector-shaped counter-flow dielectric barrier discharge plasma actuator

Borui Zheng(郑博睿)1,4,5, Shaojie Qi(齐少杰)2,4, Minghao Yu(喻明浩)2,†, Jianbo Zhang(张剑波)1,4,5, Linwu Wang(王林武)1,4,5, and Dongliang Bian(卞栋梁)3
1 School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, China;
2 School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China;
3 Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi'an 710038, China;
4 Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing, Xi'an 710048, China;
5 Shaanxi University Key Laboratory of Photonic Power Devices and Discharge Regulation, Xi'an 710048, China
Abstract  The primary objective in aircraft transportation is to minimize turbulent drag, thereby conserving energy and reducing emissions. We propose a sector-shaped counter-flow dielectric barrier discharge plasma actuator, which leverages jet synthesis for drag reduction. A drag control experiment was conducted in a low-speed wind tunnel with a controlled flow velocity of 9.6 m/s ($Re = 1.445\times 10^{4}$). This study investigated the effects of varying pulse frequencies and actuation voltages on the turbulent boundary layer. Using a hot-wire measurement system, we analyzed the pulsating and time-averaged velocity distributions within the boundary layer to evaluate the streamwise turbulent drag reduction. The results show that the local TDR decreases as the pulse frequency increases, reaching a maximum reduction of approximately 20.97% at a pulse frequency of 50 Hz. In addition, as the actuation voltage increases, the friction coefficient decreases, increasing the drag reduction rate. The maximum drag reduction of approximately 33.34% is achieved at an actuation voltage of 10 kV.
Keywords:  plasma flow control      turbulent boundary layer      turbulent drag reduction  
Received:  03 September 2024      Revised:  30 November 2024      Accepted manuscript online:  20 December 2024
PACS:  52.25.Gj (Fluctuation and chaos phenomena)  
  52.30.-q (Plasma dynamics and flow)  
  52.35.Ra (Plasma turbulence)  
  52.35.We (Plasma vorticity)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61971345 and 52107174).
Corresponding Authors:  Minghao Yu     E-mail:  ymh@xaut.edu.cn

Cite this article: 

Borui Zheng(郑博睿), Shaojie Qi(齐少杰), Minghao Yu(喻明浩), Jianbo Zhang(张剑波), Linwu Wang(王林武), and Dongliang Bian(卞栋梁) Turbulent drag reduction by sector-shaped counter-flow dielectric barrier discharge plasma actuator 2025 Chin. Phys. B 34 025205

[1] Bushnell D M 2003 Journal of Aerospace Engineering 217 1
[2] Abbas A, Bugeda G and Ferrer E 2017 Science China Technological Sciences 60 1281
[3] Marusic I, McKeon B J, Monkewitz P A, et al. 2010 Phys. Fluids 22 065103
[4] Corke T C and Thomas F O 2018 AIAA Journal 56 3835
[5] Perlin M and David R 2016 Journal of Fluids Engineering 138 9
[6] Zhao Z, Jiang R and Feng J 2022 Ocean Engineering 253 111266
[7] Wang J J, Li Y C and Choi K S 2008 Progress in Aerospace sciences 44 22
[8] Nesselrooij M V, Veldhuis L, Oudheusden B V and Schrijer F 2016 Exp. Fluids 57 142
[9] Lu L S, Li D and Zheng J 2020 Advances in Aeronautical Science and Engineering 11 5
[10] Yao J, Chen X and Thomas F 2017 Phys. Rev. Fluids 2 062601
[11] Yao J, Chen X and Hussain F 2018 J. Fluid Mech. 852 678
[12] Zheng B R, Ke X and Ge C 2020 AIAA Journal 58 1
[13] Lei Y, Dong S, Liang R, Feng Y, Xiang S and Chen K 2024 IEEE Transactions on Plasma Science 52 867
[14] Yang L L, Cai J S and Kang L 2017 High Voltage Engineering 43 6
[15] Zhao L S, Dong S L, Xiang S Z, Mao S P, Lei Y, Zhang P H, Yu L and Yao C G 2024 IEEE Transactions on Industrial Electronics 71 12086
[16] Shang J S and Huang P G 2014 Progress in Aerospace Sciences 67 29
[17] Jukes T, Choi K S and Johnson G A 2006 AIAA Flow Control Conference 14 3693
[18] Whalley R and Choi K S 2011 Journal of Physics 318 022039
[19] Whalley R and Choi K 2011 5th Flow Control Conference
[20] Wang C C and Ryan D 2011 J. Appl. Phys. 109 083305
[21] Roy S and Wang C C 2009 J. Phys. D: Appl. Phys. 42 032004
[22] Kornilov V 2015 Progress in Aerospace Sciences 76 1
[23] Zheng B R, Jin Y and Yu M H 2022 Plasma Science and Technology 24 114003
[24] Zheng B R, Xue M and Ge C 2020 Chin. Phys. B 29 064703
[25] Pope S B 2001 Measurement Science and Technology 12 11
[26] Cheng X Q, Qiao Z X and Zhang X 2021 J. Fluid Mech. 920 A50
[27] Wu B, Gao C and Liu F 2019 Plasma Science and Technology 21 045501
[28] Thomas F O, Corke T C and Duong A 2019 J. Phys. D: Appl. Phys. 52 434001
[29] Ran W, Zare A and Jovanović M R 2021 J. Fluid Mech. 906 A7
[1] Experimental investigation of closed-loop active control to modulate coherent structures by mu-level method
Jian-Xia Bai(白建侠), Zi-Ye Fan(范子椰), Nan Jiang(姜楠), Qiu-Ying Li(李秋营), and Xiao-Bo Zheng(郑小波). Chin. Phys. B, 2024, 33(7): 074701.
[2] Flow control performance evaluation of a tri-electrode sliding discharge plasma actuator
Borui Zheng(郑博睿), Yuanpeng Liu(刘园鹏), Minghao Yu(喻明浩), Yuanzhong Jin(金元中),Qian Zhang(张倩), and Quanlong Chen(陈全龙). Chin. Phys. B, 2023, 32(9): 095203.
[3] Effects of single synthetic jet on turbulent boundary layer
Jin-Hao Zhang(张津浩), Biao-Hui Li(李彪辉), Yu-Fei Wang(王宇飞), and Nan Jiang(姜楠). Chin. Phys. B, 2022, 31(7): 074702.
[4] Experimental investigation on drag reduction in a turbulent boundary layer with a submerged synthetic jet
Biao-Hui Li(李彪辉), Kang-Jun Wang(王康俊), Yu-Fei Wang(王宇飞), and Nan Jiang(姜楠). Chin. Phys. B, 2022, 31(2): 024702.
[5] Influence of uniform momentum zones on frictional drag within the turbulent boundary layer
Kangjun Wang(王康俊) and Nan Jiang(姜楠). Chin. Phys. B, 2021, 30(3): 034703.
[6] Effect of high-or low-speed fluctuations on the small-scale bursting events in an active control experiment
Xiao-Tong Cui(崔晓通), Nan Jiang(姜楠), and Zhan-Qi Tang(唐湛棋). Chin. Phys. B, 2021, 30(1): 014702.
[7] Forebody asymmetric vortex control with extended dielectric barrier discharge plasma actuators
Borui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(6): 064703.
[8] Dynamic evolution of vortex structures induced bytri-electrode plasma actuator
Bo-Rui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(2): 024704.
[9] Active control of wall-bounded turbulence for drag reduction with piezoelectric oscillators
Jian-Xia Bai(白建侠), Nan Jiang(姜楠), Xiao-Bo Zheng(郑小波), Zhan-Qi Tang(唐湛琪), Kang-Jun Wang(王康俊), Xiao-Tong Cui(崔晓通). Chin. Phys. B, 2018, 27(7): 074701.
[10] Coherent structures over riblets in turbulent boundary layer studied by combining time-resolved particle image velocimetry (TRPIV), proper orthogonal decomposition (POD), and finite-time Lyapunov exponent (FTLE)
Shan Li(李山), Nan Jiang(姜楠), Shaoqiong Yang(杨绍琼), Yongxiang Huang(黄永祥), Yanhua Wu(吴彦华). Chin. Phys. B, 2018, 27(10): 104701.
[11] UAV flight test of plasma slats and ailerons with microsecond dielectric barrier discharge
Zhi Su(苏志), Jun Li(李军), Hua Liang(梁华), Bo-Rui Zheng(郑博睿), Biao Wei(魏彪), Jie Chen(陈杰), Li-Ke Xie(谢理科). Chin. Phys. B, 2018, 27(10): 105205.
[12] Modeling and optimization of the multichannel spark discharge
Zhi-Bo Zhang(张志波), Yun Wu(吴云), Min Jia(贾敏), Hui-Min Song(宋慧敏), Zheng-Zhong Sun(孙正中), Ying-Hong Li(李应红). Chin. Phys. B, 2017, 26(6): 065204.
[13] Electric and plasma characteristics of RF discharge plasma actuation under varying pressures
Huimin Song(宋慧敏), Min Jia(贾敏), Di Jin(金迪), Wei Cui(崔巍), Yun Wu(吴云). Chin. Phys. B, 2016, 25(3): 035204.
[14] Predetermined control of turbulent boundary layer with a piezoelectric oscillator
Xiao-Bo Zheng(郑小波), Nan Jiang(姜楠), Hao Zhang(张浩). Chin. Phys. B, 2016, 25(1): 014703.
[15] Direct numerical simulation of viscoelastic-fluid-based nanofluid turbulent channel flow with heat transfer
Yang Juan-Cheng (阳倦成), Li Feng-Chen (李凤臣), Cai Wei-Hua (蔡伟华), Zhang Hong-Na (张红娜), Yu Bo (宇波). Chin. Phys. B, 2015, 24(8): 084401.
No Suggested Reading articles found!