Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 063201    DOI: 10.1088/1674-1056/adbf82
Special Issue: SPECIAL TOPIC — Ultrafast physics in atomic, molecular and optical systems
SPECIAL TOPIC — Ultrafast physics in atomic, molecular and optical systems Prev   Next  

Relativistic terahertz laser pulse from photon deceleration in a plasma wakefield

Jie Cai(蔡杰)1,2, Minjian Wu(吴旻剑)1, Yixing Geng(耿易星)1, Huangang Lu(卢寰港)1, Han Wen(温寒)2, Liqi Han(韩立琦)2, Yanying Zhao(赵研英)1,†, Jinqing Yu(余金清)2, and Xueqing Yan(颜学庆)1
1 State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871, China;
2 Hunan Provincial Key Laboratory of High-Energy Scale Physics and Applications School of Physics and Electronics, Hunan University, Changsha 410082, China
Abstract  Terahertz (THz) radiation, spanning the frequency range 100 GHz to 10 THz, offers diverse applications in spectroscopy, materials characterization, medical diagnostics and environmental monitoring. Despite its potential, the generation of high-intensity, tunable THz radiation remains a significant challenge. In this work, we explore a novel approach to the efficient generation of THz radiation based on laser-plasma interactions, utilizing the principles of photon deceleration. When a relativistic CO2 laser passes through a pre-ionized plasma, the laser induces a nonlinear wakefield, creating a strong refractive index gradient. This gradient, combined with the lower-density region of the wakefield, slows down the laser, facilitating the accumulation of THz radiation. The resulting THz pulse exhibits extreme collimation, high energy efficiency and tunability. Our work shows that this method can achieve up to 10% conversion efficiency with optimal plasma density near the critical density. This technique presents a promising solution for overcoming current limitations in THz source development and offers potential for diverse applications.
Keywords:  terahertz radiation      photon deceleration      extreme power      laser plasma  
Received:  11 January 2025      Revised:  10 March 2025      Accepted manuscript online:  12 March 2025
PACS:  32.30.Bv (Radio-frequency, microwave, and infrared spectra)  
  52.38.-r (Laser-plasma interactions)  
  42.62.-b (Laser applications)  
Fund: Project supported by the China Postdoctoral Science Foundation (Grant No. 2024T170021), the Beijing Municipal Science & Technology Commission, Administrative Commission of Zhongguancun Science Park (Grant No. Z231100006023003), the National Natural Science Foundation of China (Grant Nos. 12175058, 12205007, and 11921006), and the National Science Fund of Hunan Province for Distinguished Young Scholars (Grant No. 2024JJ2009).
Corresponding Authors:  Yanying Zhao     E-mail:  zhaoyanying@pku.edu.cn

Cite this article: 

Jie Cai(蔡杰), Minjian Wu(吴旻剑), Yixing Geng(耿易星), Huangang Lu(卢寰港), Han Wen(温寒), Liqi Han(韩立琦), Yanying Zhao(赵研英), Jinqing Yu(余金清), and Xueqing Yan(颜学庆) Relativistic terahertz laser pulse from photon deceleration in a plasma wakefield 2025 Chin. Phys. B 34 063201

[1] Hafez H, Chai X, Ibrahim A, Mondal S, Férachou D, Ropagnol X and Ozaki T 2016 Journal of Optics 18 093004
[2] Zhang X C, Shkurinov A and Zhang Y 2017 Nat. Photon. 11 16
[3] Leitenstorfer A, Moskalenko A S, Kampfrath T, Kono J, Castro-Camus E, Peng K, Qureshi N, Turchinovich D, Tanaka K, Markelz A G, et al. 2023 J. Phys. D: Appl. Phys. 56 223001
[4] Yu C, Fan S, Sun Y and Pickwell-MacPherson E 2012 Quantitative Imaging in Medicine and Surgery 2 33
[5] Yu L, Hao L, Meiqiong T, Jiaoqi H, Wei L, Jinying D, Xueping C, Weiling F and Yang Z 2019 RSC Advances 9 9354
[6] Chen Z, Han C, Wu Y, Li L, Huang C, Zhang Z, Wang G and Tong W 2021 IEEE Communications Magazine 59 66
[7] Kulesa C 2011 IEEE Transactions on Terahertz Science and Technology 1 232
[8] Lara-Avila S, Danilov A, Golubev D, He H, Kim K, Yakimova R, Lombardi F, Bauch T, Cherednichenko S and Kubatkin S 2019 Nature Astronomy 3 983
[9] Nanni E A, Huang W R, Hong K H, Ravi K, Fallahi A, Moriena G, Dwayne Miller R and Kärtner F X 2015 Nat. Commun. 6 8486
[10] Zhang D, Fallahi A, Hemmer M, Wu X, Fakhari M, Hua Y, Cankaya H, Calendron A L, Zapata L E, Matlis N H, et al. 2018 Nat. Photon. 12 336
[11] Curry E, Fabbri S, Maxson J, Musumeci P and Gover A 2018 Phys. Rev. Lett. 120 094801
[12] Zhao L, Wang Z, Lu C, Wang R, Hu C, Wang P, Qi J, Jiang T, Liu S, Ma Z, et al. 2018 Phys. Rev. X 8 021061
[13] Kealhofer C, SchneiderW, Ehberger D, Ryabov A, Krausz F and Baum P 2016 Science 352 429
[14] LaRue J L, Katayama T, Lindenberg A, Fisher A S, Öström H, Nilsson A and Ogasawara H 2015 Phys. Rev. Lett. 115 036103
[15] Kampfrath T, Sell A, Klatt G, Pashkin A, Mährlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A and Huber R 2011 Nat. Photon. 5 31
[16] Kampfrath T, Tanaka K and Nelson K A 2013 Nat. Photon. 7 680
[17] Baierl S, Hohenleutner M, Kampfrath T, Zvezdin A, Kimel A, Huber R and Mikhaylovskiy R 2016 Nat. Photon. 10 715
[18] Tan Y, Zhao H, Wang W M, Zhang R, Zhao Y J, Zhang C L, Zhang X C and Zhang L L 2022 Phys. Rev. Lett. 128 093902
[19] Zhang L L,WangWM,Wu T, Feng S J, Kang K, Zhang C L, Zhang Y, Li Y T, Sheng Z M and Zhang X C 2019 Phys. Rev. Applied 12 014005
[20] Wang J, Zhang Z, Zhou S, Qin Z, Yu C, Cao Y, Lv Y, Chen J, Huang H, Liu W, et al. 2025 Laser & Photonics Reviews 19 2400954
[21] Maestrini A,Ward J S, Javadi H, Tripon-Canseliet C, Gill J, Chattopadhyay G, Schlecht E and Mehdi I 2005 IEEE Microwave and Wireless Components Lett. 15 871
[22] Köhler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Iotti R C and Rossi F 2002 Nature 417 156
[23] Wu X J, Ma J L, Zhang B L, Chai S S, Fang Z J, Xia C Y, Kong D Y, Wang J G, Liu H, Zhu C Q, et al. 2018 Opt. Express 26 7107
[24] Sell A, Leitenstorfer A and Huber R 2008 Opt. Lett. 33 2767
[25] Liao G Q and Li Y T 2019 IEEE Transactions on Plasma Science 47 3002
[26] Zhang L L, Wang W M, Wu T, Zhang R, Zhang S J, Zhang C L, Zhang Y, Sheng Z M and Zhang X C 2017 Phys. Rev. Lett. 119 235001
[27] Maine P, Strickland D, Bado P, Pessot M and Mourou G 1988 IEEE Journal of Quantum Electronics 24 398
[28] Sprangle P, Esarey E and Ting A 1990 Phys. Rev. Lett. 64 2011
[29] Wilks S, Dawson J, Mori W, Katsouleas T and Jones M 1989 Phys. Rev. Lett. 62 2600
[30] Nie Z, Pai C H, Hua J, Zhang C, Wu Y, Wan Y, Li F, Zhang J, Cheng Z, Su Q, et al. 2018 Nat. Photon. 12 489
[31] Nie Z, Pai C H, Zhang J, Ning X, Hua J, He Y, Wu Y, Su Q, Liu S, Ma Y, et al. 2020 Nat. Commun. 11 2787
[32] Zhu X L, Weng S M, Chen M, Sheng Z M and Zhang J 2020 Light: Science & Applications 9 46
[33] Nie Z, Wu Y, Zhang C, Mori W B, Joshi C, Lu W, Pai C H, Hua J and Wang J 2021 Phys. Plasmas 28 023106
[34] Zhu X L, Chen M, Weng S M, McKenna P, Sheng Z M and Zhang J 2019 Phys. Rev. Applied 12 054024
[35] Li D, Zhang G, Zhao J, Hu Y, Lu Y, Zhang H, Li Q, Zhang D, Sha R, Shao F, et al. 2023 High Power Laser Science and Engineering 11 e57
[36] Wang Y X, Shou Y R, Cai J, Han L Q, Geng Y X, Yu J Q and Yan X Q 2024 Phys. Plasmas 31 033111
[37] Esarey E, Ting A and Sprangle P 1990 Phys. Rev. A 42 3526
[38] Mironov V, Sergeev A, Vanin E and Brodin G 1990 Phys. Rev. A 42 4862
[39] Lu W, Tzoufras M, Joshi C, Tsung F, Mori W, Vieira J, Fonseca R and Silva L 2007 Phys. Rev. Spec. Topi. Accel. Beams 10 061301
[40] Mori W 1997 IEEE Journal of Quantum Electronics 33 1942
[41] Huang S W, Granados E, Huang W R, Hong K H, Zapata L E and Kärtner F X 2013 Opt. Lett. 38 796
[42] Fülöp J, Pálfalvi L, Klingebiel S, Almási G, Krausz F, Karsch S and Hebling J 2012 Opt. Lett. 37 557
[43] Stepanov A, Henin S, Petit Y, Bonacina L, Kasparian J and Wolf J P 2010 Appl. Phys. B 101 11
[44] Vicario C, Ovchinnikov A, Ashitkov S, Agranat M, Fortov V and Hauri C 2014 Opt. Lett. 39 6632
[45] Liao G, Li Y, Liu H, Scott G G, Neely D, Zhang Y, Zhu B, Zhang Z, Armstrong C, Zemaityte E, et al. 2019 Proc. Natl. Acad. Sci. USA 116 3994
[46] Déchard J, Debayle A, Davoine X, Gremillet L and Bergé L 2018 Phys. Rev. Lett. 120 144801
[47] Liao G, Li Y, Li C, Su L, Zheng Y, Liu M, Wang W, Hu Z, Yan W, Dunn J, et al. 2015 Phys. Rev. Lett. 114 255001
[1] Nonlinear mixing-based terahertz emission in inclined rippled density plasmas
K Gopal, A P Singh, and S Divya. Chin. Phys. B, 2023, 32(6): 065202.
[2] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[3] Influence of water environment on paint removal and the selection criteria of laser parameters
Li-Jun Zhang(张丽君), Kai-Nan Zhou(周凯南), Guo-Ying Feng(冯国英), Jing-Hua Han(韩敬华),Na Xie(谢娜), and Jing Xiao(肖婧). Chin. Phys. B, 2022, 31(6): 064205.
[4] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[5] Cherenkov terahertz radiation from Dirac semimetals surface plasmon polaritons excited by an electron beam
Tao Zhao(赵陶), Zhenhua Wu(吴振华). Chin. Phys. B, 2020, 29(3): 034101.
[6] Effect of terahertz pulse on gene expression in human eye cells
Jin-Wu Zhao(赵晋武), Ming-Xia He(何明霞), Li-Jie Dong(东莉洁), Shao-Xian Li(李绍限), Li-Yuan Liu(刘立媛), Shao-Chong Bu(步绍翀), Chun-Mei Ouyang(欧阳春梅), Peng-Fei Wang(王鹏騛), Long-Ling Sun(孙珑玲). Chin. Phys. B, 2019, 28(4): 048703.
[7] Generation of high quality ion beams through the stable radiation pressure acceleration of the near critical density target
Xue-Ren Hong(洪学仁), Wei-Jun Zhou(周伟军), Bai-Song Xie(谢柏松), Yang Yang(杨阳), Li Wang(王莉), Jian-Min Tian(田建民), Rong-An Tang(唐荣安), Wen-Shan Duan(段文山). Chin. Phys. B, 2017, 26(6): 065203.
[8] Solid-like ablation propulsion generation in nanosecond pulsed laser interaction with carbon-doped glycerol
Zhi-Yuan Zheng(郑志远), Si-Qi Zhang(张思齐), Tian Liang(梁田), Jing Qi(齐婧), Wei-Chong Tang(汤唯冲), Ke Xiao(肖珂), Lu Gao(高禄), Hua Gao(高华), Zi-Li Zhang(张自力). Chin. Phys. B, 2017, 26(3): 035203.
[9] Detailed calibration of the PI-LCX: 1300 high performance single photon counting hard x-ray CCD camera
Wei Hong(洪伟), Xian-Lun Wen(温贤伦), Lai Wei(魏来), Bin Zhu(朱斌), Yu-Chi Wu(吴玉迟), Ke-Gong Dong(董克攻), Chun-Ye Jiao(焦春晔), Bo Wu(伍波), Ying-Ling He(何颖玲), Fa-Qiang Zhang(张发强), Wei-Min Zhou(周维民), Yu-Qiu Gu(谷渝秋). Chin. Phys. B, 2017, 26(2): 025204.
[10] Acceleration and radiation of externally injected electrons in laser plasma wakefield driven by a Laguerre-Gaussian pulse
Zhong-Chen Shen(沈众辰), Min Chen(陈民), Guo-Bo Zhang(张国博), Ji Luo(罗辑), Su-Ming Weng(翁苏明), Xiao-Hui Yuan(远晓辉), Feng Liu(刘峰), Zheng-Ming Sheng(盛政明). Chin. Phys. B, 2017, 26(11): 115204.
[11] Characteristics of droplets ejected from liquid glycerol doped with carbon in laser ablation propulsion
Zhi-Yuan Zheng(郑志远), Si-Qi Zhang(张思齐), Tian Liang(梁田), Lu Gao(高禄), Hua Gao(高华), Zi-Li Zhang(张自力). Chin. Phys. B, 2016, 25(4): 045204.
[12] Filamentation instability in two counter-streaming laser plasmas
Hui Liu(刘慧), Quan-Li Dong(董全力), Da-Wei Yuan(袁大伟), Xun Liu(刘勋), Neng Hua(华能), Zhan-Feng Qiao(乔战峰), Bao-Qiang Zhu(朱宝强), Jian-Qiang Zhu(朱健强), Bo-Bin Jiang(蒋柏彬), Kai Du(杜凯), Yong-Jian Tang(唐永健), Gang Zhao(赵刚), Xiao-Hui Yuan(远晓辉), Zheng-Ming Sheng(盛政明), Jie Zhang(张杰). Chin. Phys. B, 2016, 25(12): 125201.
[13] Tunable terahertz radiation from arbitrary profile dielectric grating coated with graphene excited by an electron beam
Zhao Tao (赵陶), Zhong Ren-Bin (钟任斌), Hu Min (胡旻), Chen Xiao-Xing (陈晓行), Zhang Ping (张平), Gong Sen (龚森), Liu Sheng-Gang (刘盛纲). Chin. Phys. B, 2015, 24(9): 094102.
[14] High-order optical vortex harmonics generated by relativistic femtosecond laser pulse
Han Yu-Jing (韩玉晶), Liao Guo-Qian (廖国前), Chen Li-Ming (陈黎明), Li Yu-Tong (李玉同), Wang Wei-Min (王伟民), Zhang Jie (张杰). Chin. Phys. B, 2015, 24(6): 065202.
[15] Production of intense attosecond vector beam pulse trains based on harmonics
Han Yu-Jing (韩玉晶), Liao Guo-Qian (廖国前), Chen Li-Ming (陈黎明), Li Yu-Tong (李玉同), Wang Wei-Min (王伟民), Zhang Jie (张杰). Chin. Phys. B, 2015, 24(11): 115203.
No Suggested Reading articles found!