Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 105203    DOI: 10.1088/1674-1056/adf17c
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Effect of the confinement on two-dimensional complex plasmas with the shear force

Haoyu Qi(齐颢与)1,2,†, Yang Liu(刘阳)1,3,†, Shaohuang Bian(卞少皇)4, Runing Liang(梁儒宁)1, Dan Zhang(张丹)1, and Feng Huang(黄峰)1,‡
1 College of Science, China Agricultural University, Beijing 100083, China;
2 Office for Science and Technology, Northwest University, Xi'an 710069, China;
3 Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universit?t, D-24098 Kiel, Germany;
4 College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
Abstract  Langevin molecular dynamics simulations reveal the impact of confinement strength on the structure and dynamics of a two-dimensional complex plasma under constant shear force. Structural analysis via Voronoi diagrams and the local bond-order parameter $|\varPsi_6|$ shows that stronger confinement enhances hexagonal order and mitigates shear-induced disorder. Dynamical properties, determined by mean-square displacement (MSD) and the velocity autocorrelation function (VACF), indicate that the shear-induced superdiffusion weakens with increasing confinement strength. The entropy change ($\Delta{S}$) shows that strong confinement ($\omega > 1$) balances particle dynamics between shear and shear-free regions, thereby stabilizing the system. These findings highlight the interplay between confinement and shear force.
Keywords:  complex plasmas      steady shear flow      Langevin dynamics simulation      confinement  
Received:  26 February 2025      Revised:  04 July 2025      Accepted manuscript online:  18 July 2025
PACS:  52.27.Lw (Dusty or complex plasmas; plasma crystals)  
  83.50.Ax (Steady shear flows, viscometric flow)  
  05.10.Gg (Stochastic analysis methods)  
  52.58.Qv (Electrostatic and high-frequency confinement)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12075315).
Corresponding Authors:  Feng Huang     E-mail:  05033@cau.edu.cn

Cite this article: 

Haoyu Qi(齐颢与), Yang Liu(刘阳), Shaohuang Bian(卞少皇), Runing Liang(梁儒宁), Dan Zhang(张丹), and Feng Huang(黄峰) Effect of the confinement on two-dimensional complex plasmas with the shear force 2025 Chin. Phys. B 34 105203

[1] Maity S and Arora G 2022 Sci. Rep. 12 20430
[2] Vaulina O, Khrapak S and Morfill G 2002 Phys. Rev. E 66 016404
[3] Schweigert V A, Schweigert I V, Melzer A, Homann A and Piel A 1998 Phys. Rev. Lett. 80 5345
[4] Liu B and Goree J 2008 Phys. Rev. Lett. 100 055003
[5] Maity S, Das A, Kumar S and Tiwari S K 2018 Phys. Plasmas 25 043701
[6] Quinn R A and Goree J 2000 Phys. Rev. E 61 3033
[7] Nosenko V and Goree J 2004 Phys. Rev. Lett. 93 155004
[8] Huang J, Wu Q, Ren Y, Yang F, Yang A, Yang Q and Pu X 2024 Proc. AAAI Conf. Artif. Intell. 38 2339
[9] Di Cairano L, Stamm B and Calandrini V 2021 Biophys. J. 120 4722
[10] Yu S, Wu J, Meng X, Chu R, Li X and Wu G 2021 Entropy 23 542
[11] Bley M, Hurtado P I, Dzubiella J and Moncho-Jordá A 2022 Soft Matter 18 397
[12] Liu Y, Zhu X, Wang Y, Chen Z and Huang F 2020 Contrib. Plasma Phys. 60 e201900190
[13] Wang J, Liu Y, Wang Y, Zhu W, Zhang W and Huang F 2021 IEEE Trans. Plasma Sci. 49 1694
[14] SwopeWC, Andersen H C, Berens P H andWilson K R 1982 J. Chem. Phys. 76 637
[15] Liu Y, Blosczyk N and Block D 2023 Phys. Plasmas 30 043701
[16] Song Y L, Huang F, Chen Z Y, Liu Y H and Yu M Y 2016 Phys. Lett. A 380 886
[17] Chen Z Y, Kong M H, Milošević M V and Wu Y C 2003 Phys. Scr. 67 439
[18] Amiranashvili Sh G, Gusein-Zade N G and Tsytovich V N 2001 Phys. Rev. E 64 016407
[19] Hou X N, Liu Y H, Huang F, Jiang S Z, Chen Z Y and Zhang R Y 2016 Phys. Plasmas 23 093702
[20] Huang F, Liu Y H, Ye M F, Wang X J and Wang L 2010 Chin. Phys. Lett. 27 115201
[21] Li W, Huang D, Wang K, Reichhardt C, Reichhardt C J O, Murillo M S and Feng Y 2018 Phys. Rev. E 98 063203
[22] Wang K, Li W, Huang D, Reichhardt C, Reichhardt C J O, Murillo M S and Feng Y 2018 Phys. Rev. E 98 063204
[23] Hou L J, Piel A and Shukla P K 2009 Phys. Rev. Lett. 102 085002
[24] Huang D, Baggioli M, Lu S, Ma Z and Feng Y 2023 Phys. Rev. Res. 5 013149
[25] Feng Y, Goree J and Liu B 2010 Phys. Rev. Lett. 104 165003
[26] Feng Y, Goree J and Liu B 2012 Phys. Rev. E 86 056403
[27] Liu B, Goree J, Pustylnik M Y, Thomas H M, Fortov V E, Lipaev A M, Usachev A D, Petrov O F, Zobnin A V and Thoma M H 2021 IEEE Trans. Plasma Sci. 49 2972
[28] Rothermel H, Hagl T, Morfill G E, Thoma M H and Thomas H M 2002 Phys. Rev. Lett. 89 175001
[29] Yang L, Schwabe M, Zhdanov S, Thomas H M, Lipaev A M, Molotkov V I, Fortov V E, Zhang J and Du C R 2017 Europhys. Lett. 117 25001
[30] Durniak C, Samsonov D, Oxtoby N P, Ralph J F and Zhdanov S 2010 IEEE Trans. Plasma Sci. 38 2412
[31] Zhdanov S, Nunomura S, Samsonov D and Morfill G 2003 Phys. Rev. E 68 035401
[32] Edelsbrunner H and Seidel R 1985 Proc. 1st Annu. Symp. Comput. Geom. pp. 251-262
[33] Fortune S 1986 Proc. 2nd Annu. Symp. Comput. Geom. pp. 313-322
[34] Aurenhammer F and Klein R 2000 Handbook of Computational Geometry 5 201
[35] Fortune S 2017 Handbook of Discrete and Computational Geometry (Chapman and Hall/CRC) pp. 705-721
[36] Brock J D 1992 Bond-Orientational Order in Condensed Matter Systems (Springer) pp. 1-31
[37] Woon W Y and Lin I 2004 Phys. Rev. Lett. 92 065003
[38] Chan C L, Woon W Y and Lin I 2004 Phys. Rev. Lett. 93 220602
[39] Ott T and Bonitz M 2009 Phys. Rev. Lett. 103 195001
[40] Souzy M, Yin X, Villermaux E, Abid C and Metzger B 2015 Phys. Fluids 27 045104
[41] Utter B and Behringer R P 2004 Phys. Rev. E 69 031308
[42] Wong C S, Goree J, Haralson Z and Liu B 2018 Nat. Phys. 14 21
[43] Pandey B P and Vranjes J 2005 Phys. Scr. 72 247
[44] Wolf R A, Wan Y, Xing X, Zhang J C and Sazykin S 2009 J. Geophys. Res. Space Phys. 114 A09202
[45] Kaur P and Ganesh R 2019 Phys. Rev. E 100 053201
[46] Popel S I 1998 Phys. Scr. 57 272
[47] Wieben F and Block D 2019 Phys. Rev. Lett. 123 225001
[1] Quantum confinement of carriers in the type-I quantum wells structure
Xinxin Li(李欣欣), Zhen Deng(邓震), Yang Jiang(江洋), Chunhua Du(杜春花), Haiqiang Jia(贾海强), Wenxin Wang(王文新), and Hong Chen(陈弘). Chin. Phys. B, 2024, 33(9): 097301.
[2] Recent progress on deep learning-based disruption prediction algorithm in HL-2A tokamak
Zongyu Yang(杨宗谕), Yuhang Liu(刘宇航), Xiaobo Zhu(朱晓博), Zhengwei Chen(陈正威), Fan Xia(夏凡), Wulyu Zhong(钟武律), Zhe Gao(高喆), Yipo Zhang(张轶泼), and Yi Liu(刘仪). Chin. Phys. B, 2023, 32(7): 075202.
[3] Anion type-dependent confinement effect on glass transitions of solutions of LiTFSI and LiFSI
Jinbing Zhang(张晋兵), Fengping Wang(王凤平), Zexian Cao(曹则贤), and Qiang Wang(王强). Chin. Phys. B, 2023, 32(7): 076401.
[4] Bubble nucleation in spherical liquid cavity wrapped by elastic medium
Xian-Mei Zhang(张先梅), Fan Li(李凡), Cheng-Hui Wang(王成会), Jing Hu(胡静), Run-Yang Mo(莫润阳), Zhuang-Zhi Shen(沈壮志), Jian-Zhong Guo(郭建中), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(6): 064303.
[5] Bacterial turbulence in gradient confinement
Ningzhe Yan(颜宁哲), Chenliang Xie(谢晨亮), Hao Luo(罗昊), Yanan Liu(刘亚楠), and Guangyin Jing(经光银). Chin. Phys. B, 2023, 32(11): 114704.
[6] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
[7] Solid-gas interface thermal conductance for the thermal barrier coating with surface roughness: The confinement effect
Xue Zhao(赵雪) and Jin-Wu Jiang(江进武). Chin. Phys. B, 2022, 31(12): 126802.
[8] Magnetohydrodynamic Kelvin-Helmholtz instability for finite-thickness fluid layers
Hong-Hao Dai(戴鸿昊), Miao-Hua Xu(徐妙华), Hong-Yu Guo(郭宏宇), Ying-Jun Li(李英骏), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(12): 120401.
[9] High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁). Chin. Phys. B, 2022, 31(1): 014102.
[10] Speedup of self-propelled helical swimmers in a long cylindrical pipe
Ji Zhang(张骥), Kai Liu(刘凯), and Yang Ding(丁阳). Chin. Phys. B, 2022, 31(1): 014702.
[11] Small activation entropy bestows high-stability of nanoconfined D-mannitol
Lin Cao(曹琳), Li-Jian Song(宋丽建), Ya-Ru Cao(曹亚茹), Wei Xu(许巍), Jun-Tao Huo(霍军涛), Yun-Zhuo Lv(吕云卓), and Jun-Qiang Wang(王军强). Chin. Phys. B, 2021, 30(7): 076103.
[12] Reduction of impurity confinement time by combined heating of LHW and ECRH in EAST
Zong Xu(许棕), Zhen-Wei Wu(吴振伟), Ling Zhang(张凌), Yue-Heng Huang(黄跃恒), Wei Gao(高伟), Yun-Xin Cheng(程云鑫), Xiao-Dong Lin(林晓东), Xiang Gao(高翔), Ying-Jie Chen(陈颖杰), Lei Li(黎嫘), Yin-Xian Jie(揭银先), Qing Zang(臧庆), Hai-Qing Liu(刘海庆), and EAST team. Chin. Phys. B, 2021, 30(7): 075205.
[13] A fitting formula for electron-ion energy partition fraction of 3.54-MeV fusion alpha particles in hot dense deuterium-tritium plasmas
Yan-Ning Zhang(张艳宁), Zhi-Gang Wang(王志刚), Yong-Tao Zhao(赵永涛), and Bin He(何斌). Chin. Phys. B, 2021, 30(1): 015202.
[14] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[15] Active Brownian particles simulated in molecular dynamics
Liya Wang(王丽雅), Xinpeng Xu(徐新鹏), Zhigang Li(李志刚), Tiezheng Qian(钱铁铮). Chin. Phys. B, 2020, 29(9): 090501.
No Suggested Reading articles found!