Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 115201    DOI: 10.1088/1674-1056/ade385
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

One-dimensional theoretical analysis on charged-particle transports in a decaying plasma with an initial plasma–electrode gap

Xin-Li Sun(孙鑫礼), Yao-Ting Wang(汪耀庭), Lan-Yue Luo(罗岚月), Zi-Ming Zhang(张子明), Meng-Long Zhang(张梦龙), He-Ping Li(李和平)†, Dong-Jun Jiang(姜东君), and Ming-Sheng Zhou(周明胜)
Department of Engineering Physics, Tsinghua University, Beijing 100084, China
Abstract  An analytical model for describing the charged-particle transport in a wall-confined laser-induced decaying plasma is established under an external electrostatic field, focusing on the effects of the initial plasma–electrode gap (IPEG) that exists in applications such as laser isotope separation. This newly developed analytical model is validated by particle-in-cell simulations and the experimental scaling relation, and can also be reduced to its previously published counterpart that did not consider IPEGs. Based on this analytical model, the influences of different IPEG spacings on the characteristics of the whole ion extraction process are studied. The results show that the ion extraction ratios at the endpoints of the first and second stages both decrease with increasing IPEG spacing, while the corresponding time durations for the first two stages show a non-monotonous variation trend. The specific ion extraction time, defined as the ion extraction time per unit mass to comprehensively characterize the ion extraction efficiency, increases generally with the increase of IPEG spacing. This study not only provides further insight into the fundamental physical processes in a wall-bounded decaying plasma under an externally applied electrostatic field, but also offers useful theoretical guidance for optimal designs of geometrical and operating parameters in laser isotope separation processes.
Keywords:  decaying plasma      charged-particle transport      effect of plasma–electrode gap      theoretical analysis      PIC simulation  
Received:  09 April 2025      Revised:  31 May 2025      Accepted manuscript online:  11 June 2025
PACS:  52.30.-q (Plasma dynamics and flow)  
  52.35.Fp (Electrostatic waves and oscillations (e.g., ion-acoustic waves))  
  52.50.Qt (Plasma heating by radio-frequency fields; ICR, ICP, helicons)  
  28.60.+s (Isotope separation and enrichment)  
Fund: Project supported by the National Key Laboratory of Particle Transport and Separation Technology (Grant No. WZKF- 2024-2).
Corresponding Authors:  He-Ping Li     E-mail:  liheping@tsinghua.edu.cn

Cite this article: 

Xin-Li Sun(孙鑫礼), Yao-Ting Wang(汪耀庭), Lan-Yue Luo(罗岚月), Zi-Ming Zhang(张子明), Meng-Long Zhang(张梦龙), He-Ping Li(李和平), Dong-Jun Jiang(姜东君), and Ming-Sheng Zhou(周明胜) One-dimensional theoretical analysis on charged-particle transports in a decaying plasma with an initial plasma–electrode gap 2025 Chin. Phys. B 34 115201

[1] Lieberman M A 1989 J. Appl. Phys. 66 2926
[2] Riemann K U and Daube T 1999 J. Appl. Phys. 86 1202
[3] Daube T, Meyer P, Riemann K U and Schmitz H 2002 J. Appl. Phys. 91 1787
[4] Widner M, Alexeff I, Jones W D and Lonngren K E 1970 Phys. Fluids 13 2532
[5] Chen F F 1982 Phys. Fluids 25 2385
[6] Li H P,Wang P,Wang X, YouW, Chai J J and Li Z Y 2015 High Voltage Eng. 41 2825 (in Chinese)
[7] Li H P, Wang X, Wang P, Chai J J and Li Z X 2016 High Voltage Eng. 42 706 (in Chinese)
[8] Ogura K, Arisawa T and Shibata T 1992 Jpn. J. Appl. Phys. 31 1485
[9] Nishio R, Yamada K, Suzuki K and Wakabayashi M 1995 J. Nucl. Sci. Technol. 32 180
[10] Kurosawa H, Hasegawa S and Suzuki A 2002 J. Appl. Phys. 91 4818
[11] Singh P, Sridhar G and Maiti N 2023 IEEE Trans. Plasma Sci. 51 35
[12] Yamada K, Tetsuka T and Deguchi Y 1991 J. Appl. Phys. 69 8064
[13] Lu X Y, Yuan C, Zhang X Z and Zhang Z Z 2020 Chin. Phys. B 29 045201
[14] Wang Y T, Chen J, Li H P, Jiang D J and Zhou M S 2021 Jpn. J. Appl. Phys. 60 SAAB05
[15] Matsui T, Tsuchida K, Tsuda S, Suzuki K and Shoji T 1996 Phys. Plasmas 3 4367
[16] Matsui T, Tsuchida K, Tsuda S, Suzuki K and Shoji T 1997 J. Nucl. Sci. Technol. 34 923
[17] Ohzu A, Suzuki Y, Maruyama Y and Arisawa T 2000 Phys. Plasmas 7 770
[18] Wang Y T, Luo L Y, Li H P, Jiang D J and Zhou M S 2022 Acta Phys. Sin. 71 232801 (in Chinese)
[19] Yamada K and Tetsuka T 1994 J. Nucl. Sci. Technol. 31 301
[20] Murakami M, Ueshima Y and Nishihara K 1993 Jpn. J. Appl. Phys. 32 L1471
[21] Zhidkov A G 1998 Phys. Plasmas 5 541
[22] Zhu H L and Wang D W 2003 Atom. Energy Sci. Technol. 37 467 (in Chinese)
[23] Okano K 1992 J. Nucl. Sci. Technol. 29 601
[24] Murakami M and Nishihara K 1993 Phys. Fluids B 5 3441
[25] Wang Y T, Sun X L, Luo L Y, Zhang Z M, Li H P, Jiang D J and Zhou M S 2023 Chin. Phys. B 32 095201
[26] Vitello P, Cerjan C and Braun D 1992 Phys. Fluids B 4 1447[27] Chen J, Xiang J Q, Guo H, Li H P, Chen X, Wang P, Chai J J, Jiang D J and Zhou M S 2017 High Voltage Eng. 43 1830 (in Chinese)
[28] Chen J, Fu T Z, Guo H, Li H P, Jiang D J and Zhou M S 2019 Plasma Sci. Technol. 21 045402
[29] Chen J, Khrabrov A V, Wang Y T, Li J, Li H P, Jiang D J and Zhou M S 2020 Plasma Sources Sci. Technol. 29 025010
[30] Allen J E and Andrews J G 1970 J. Plasma Phys. 4 187
[31] Khrabrov A V, Kaganovich I D, Chen J and Guo H 2020 Phys. Plasmas 27 123512
[32] Litvinov I I 1997 J. Russ. Laser Res. 18 87
[33] Chen J, Li J, Li H P, Jiang D J and Zhou M S 2020 High Voltage Eng. 46 729 (in Chinese)
[34] Wang Y T 2024 Studies on the Transport Mechanisms of the Charged Particles in Low-pressure Bounded Plasmas (Ph.D. Dissertation) (Beijing: Tsinghua University) (in Chinese)
[35] Mahdieh M H and Gavili A 2003 Plasma Sources Sci. Technol. 12 513
[36] Yamada K, Tetsuka T and Deguchi Y 1990 J. Appl. Phys. 67 6734
[37] Yamada K, Tetsuka T and Deguchi Y 1991 J. Appl. Phys. 69 6962
[38] Yamada K, Okada H, Tetsuka T and Yoshioka K 1993 J. Nucl. Sci. Technol. 30 143
[39] Sydorenko D 2006 Particle-in-cell simulations of electron dynamics in low pressure discharges with magnetic fields (Ph.D. Dissertation) (Saskatchewan: The University of Saskatchewan)
[40] Xiong J G and Wang D W 2000 Acta Phys. Sin. 49 2420 (in Chinese)
[41] Singh P, Sridhar G and Maiti N 2023 Curr. Appl. Phys. 47 30
[42] Yan M, Wang D W, Ying C T and Zhu X H 1994 Nucl. Sci. Eng. 14 271 (in Chinese)
[43] Chen X, Lu X Y and Cai L 2024 AIP Adv. 14 085212
[44] Chen J, Liu Z Q, Guo H, Li H P, Jiang D J and Zhou M S 2018 Acta Phys. Sin. 67 182801 (in Chinese)
[45] Wang H Y, JiangW, Sun P and Kong L B 2014 Chin. Phys. B 23 035204
[46] Sun H, Banerjee S, Sharma S, Powis A T, Khrabrov A V, Sydorenko D, Chen J and Kaganovich I D 2023 Phys. Plasmas 30 103509
[47] Donkó Z, Derzsi A, Vass M, Horváth B, Wilczek S, Hartmann B and Hartmann P 2021 Plasma Sources Sci. Technol. 30 095017
[1] Theoretical analyses on the one-dimensional charged particle transport in a decaying plasma under an electrostatic field
Yao-Ting Wang(汪耀庭), Xin-Li Sun(孙鑫礼), Lan-Yue Luo(罗岚月), Zi-Ming Zhang(张子明), He-Ping Li(李和平), Dong-Jun Jiang(姜东君), and Ming-Sheng Zhou(周明胜). Chin. Phys. B, 2023, 32(9): 095201.
[2] Ultrabright γ-ray emission from the interaction of an intense laser pulse with a near-critical-density plasma
Aynisa Tursun(阿依妮萨·图尔荪), Mamat Ali Bake(买买提艾力·巴克), Baisong Xie(谢柏松), Yasheng Niyazi(亚生·尼亚孜), and Abuduresuli Abudurexiti(阿不都热苏力·阿不都热西提). Chin. Phys. B, 2021, 30(11): 115202.
[3] Dense pair plasma generation and its modulation dynamics in counter-propagating laser field
Wei-Yuan Liu(刘维媛), Wen Luo(罗文), Tao Yuan(袁韬), Ji-Ye Yu(余继晔), Min Chen(陈民). Chin. Phys. B, 2018, 27(10): 105202.
[4] Experimental study and analysis on the rising motion of grains in a vertically-vibrated pipe
Liu Yu (刘煜), Zhao Jun-Hong (赵俊红). Chin. Phys. B, 2015, 24(3): 034502.
[5] Electrohydromechanical analysis based on conductivity gradient in microchannel
Jiang Hong-Yuan(姜洪源), Ren Yu-Kun(任玉坤), Ao Hong-Rui (敖宏瑞), Antonio Ramos. Chin. Phys. B, 2008, 17(12): 4541-4546.
No Suggested Reading articles found!