Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 108902    DOI: 10.1088/1674-1056/add500
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A novel deceleration traffic flow model with oscillatory congested states

Junxia Wang(王君霞)1,† and Tiandong Xu(徐天东)1,2,‡
1 School of Civil Engineering and Transportation, Northeast Forestry University, Harbin 150040, China;
2 College of Design, Construction, and Planning, University of Florida, Gainesville 32611, USA
Abstract  A novel deceleration traffic flow model is established based on the oscillatory congested states and the slow-to-start rule. The novel model considers human overreaction and mechanical restrictions as limited deceleration capacity, effectively avoiding the unrealistic deceleration behavior found in most existing traffic flow models. In order to consider that the acceleration of a stationary vehicle is slower than that of a moving vehicle due to reasons such as driver inattention, the slow-to-start rule is introduced. In actual traffic, the driver will take different deceleration measures according to local traffic conditions, divided into ordinary and emergency deceleration. The deceleration setting in the deceleration model with only ordinary deceleration is modified. Computer simulations show that the novel model can achieve smooth, comfortable acceleration and deceleration behavior. Introducing the slow-to-start rule can realize the first-order transition from free flow to synchronized flow. The oscillatory congested states enable a first-order transition from synchronized flow to wide moving jam. Under periodic boundary conditions, the novel model can reproduce three traffic flow phases (free flow, synchronized flow, and wide moving jam) and two first-order transitions between three phases. In addition, the novel model can reproduce empirical results such as linear synchronized flow and headway distribution of free flow below 1 s. Under open boundary conditions, different congested patterns caused by on-ramps are analyzed. Compared with the classic deceleration model, this model can better reproduce the phenomenon and characteristics of actual traffic flow and provide more accurate decision support for daily traffic management of expressways.
Keywords:  oscillatory congested states      three-phase traffic flow      limited deceleration capacity      slow-to-start rule      cellular automaton  
Received:  03 March 2025      Revised:  05 May 2025      Accepted manuscript online:  07 May 2025
PACS:  89.40.-a (Transportation)  
  45.70.Vn (Granular models of complex systems; traffic flow)  
  05.65.+b (Self-organized systems)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 71671109), the National Key Research and Development Program of China (Grant No. 2020YFB1600500), and the Key Research and Development Program of Heilongjiang Province, China (Grant No. GZ20220089).
Corresponding Authors:  Junxia Wang, Tiandong Xu     E-mail:  wangjunxia@nefu.edu.cn;tdxu@nefu.edu.cn

Cite this article: 

Junxia Wang(王君霞) and Tiandong Xu(徐天东) A novel deceleration traffic flow model with oscillatory congested states 2025 Chin. Phys. B 34 108902

[1] Tian J F, Zhu C Q, Jiang R and Treiber M 2020 Transportmetrica A: Transport Science 2020 1
[2] Maerivoet S and Moor B D 2005 Phys. Rep. 419 1
[3] Krauss S, Wagner P and Gawron C 1997 Phys. Rev. E 55 5597
[4] Lee H K, Barlovic R, Schreckenberg M and Kim D 2004 Phys. Rev. Lett. 92 238702
[5] Pottmeier A, Thiemann C, Schadschneider A and Schreckenberg M 2007 Traffic and Granular Flow’05. Springer, Berlin, Heidelberg, p. 503
[6] Vranken T, Sliwa B, Wietfeld C and Schreckenberg M 2021 Physica A 570 125792
[7] Lan L W, Chiou Y C, Lin Z S and Hsu C C 2009 Physica A 388 3917
[8] Kokubo S, Tanimoto J and Hagishima A 2011 Physica A 390 561
[9] Jin C J, Wang W, Gao K and Jiang R 2011 Chin. Phys. B 20 064501
[10] Shang H Y and Peng Y 2012 J. Stat. Mech. 2012 P10001
[11] Lee H K, Kim J, Kim Y and Lee C K 2015 J. Stat. Mech. 2015 P06019
[12] Tian J F, Treiber M, Ma S F, Jia B and Zhang W Y 2015 Transp. Res. B Method. 71 138
[13] Guzmán H A, LárragaME, Alvarez-Icaza L and Carvajal J 2018 Physica A 491 528
[14] Li T N, Chen D J, Zhou H, Laval J and Xie Y C 2021 Transp. Res. B Method. 147 67
[15] Takayasu M and Takayasu H 1993 Fractals 1 860
[16] Schadschneider A and Schreckenberg M 1997 Ann. Phys. 509 541
[17] Nagel K and Schreckenberg M 1992 J. Phys. I 2 2221
[18] Barlovic R, Santen L, Schadschneider A and Schreckenberg M 1998 Eur. Phys. J. B 5 793
[19] Gao K, Jiang R, Hu S X, Wang B H and Wu Q S 2007 Phys. Rev. E 76 026105
[20] Kerner B S, Klenov S L and Wolf D E 2002 J. Phys. A: Math. Gen. 35 9971
[21] Qiao Y F, Xue Y, Wang X, Cen B L, Wang Y, Pan W and Zhang Y X 2021 Physica A 574 125996
[22] Fu D J, Li Q L, Jiang R and Wang B H 2020 Physica A 559 125075
[23] Li Q L, Wang J X, Ye L L, Jiang R and Wang B H 2023 Int. J. Mod. Phys. C 34 2350120
[24] Kerner B S 1998 Phys. Rev. Lett. 81 3797
[25] Kerner B S, Rehborn H, Aleksic M and Haug A 2004 Transp. Res. C Emerg. Technol. 12 369
[26] Kerner B S and Klenov S L 2009 Transp. Res. Rec. 2124 67
[27] Zhao H T, Lin L, Xu C P, Li Z X and Zhao X 2020 Physica A 553 124213
[28] Kerner B S 2009 Introduction to modern traffic flow theory and control (Berlin: Springer) pp. 1-265
[29] Kerner B S and Klenov S L 2002 J. Phys. A: Math. Gen. 35 L31
[30] Kerner B S, Klenov S L, Hermanns G and Schreckenberg M 2013 Physica A 392 4083
[31] Zeng J W, Qian Y S, Lv Z W, Yin F, Zhu L P, Zhang Y Z and Xu D J 2021 Physica A 574 125918
[32] Kerner B S, Klenov S L, Hermanns G and Schreckenberg M 2013 Physica A 392 4083
[33] Hu X J, Lin C X, Hao X T, Lu R Y and Liu T H 2021 Physica A 584 126335
[34] Hu X J, Qiao L Q, Hao X T, Lin C X and Liu T H 2022 Physica A 605 127962
[35] Lyu Z L, Hu X J, Zhang F, Liu T H and Cui Z W 2022 Physica A 587 126471
[36] Zhou S R, Ling S, Zhu C Q and Tian J F 2022 Physica A 596 127162
[37] Tian J F, Li G Y, Treiber M, Jiang R, Jia N and Ma S F 2016 Transp. Res. B Method. 93 560
[38] Gao K, Jiang R, Wang B H and Wu Q S 2009 Physica A 388 3233
[39] Kerner B S 2002 Phys. Rev. E 65 046138
[1] Modeling of microstructure and microsegregation evolution in solidification of ternary alloys
Qiannan Yu(于芊楠), Mengdan Hu(胡梦丹), Jinyi Wu(吴津仪), and Dongke Sun(孙东科). Chin. Phys. B, 2025, 34(5): 056801.
[2] Effect of speed humps on instantaneous traffic emissions in a microscopic model with limited deceleration capacity
Yu-Chen Hu(胡宇晨), Qi-Lang Li(李启朗), Jun Liu(刘军), Jun-Xia Wang(王君霞), and Bing-Hong Wang(汪秉宏). Chin. Phys. B, 2024, 33(6): 064501.
[3] Numerical simulation on dendritic growth of Al-Cu alloy under convection based on the cellular automaton lattice Boltzmann method
Kang-Wei Wang(王康伟), Meng-Wu Wu(吴孟武), Bing-Hui Tian(田冰辉), and Shou-Mei Xiong(熊守美). Chin. Phys. B, 2022, 31(9): 098105.
[4] Nonvanishing optimal noise in cellular automaton model of self-propelled particles
Guang-Le Du(杜光乐) and Fang-Fu Ye(叶方富). Chin. Phys. B, 2022, 31(8): 086401.
[5] Simulation of crowd dynamics in pedestrian evacuation concerning panic contagion: A cellular automaton approach
Guan-Ning Wang(王冠宁), Tao Chen(陈涛), Jin-Wei Chen(陈锦炜), Kaifeng Deng(邓凯丰), and Ru-Dong Wang(王汝栋). Chin. Phys. B, 2022, 31(6): 060402.
[6] Simulation-based optimization of inner layout of a theater considering the effect of pedestrians
Qing-Fei Gao(高庆飞), Yi-Zhou Tao(陶亦舟), Yan-Fang Wei(韦艳芳), Cheng Wu(吴成), Li-Yun Dong(董力耘). Chin. Phys. B, 2020, 29(3): 034501.
[7] Analyzing floor-stair merging flow based on experiments and simulation
Yu Zhu(朱萸), Tao Chen(陈涛), Ning Ding(丁宁), Wei-Cheng Fan(范维澄). Chin. Phys. B, 2020, 29(1): 010401.
[8] A new cellular automaton model accounting for stochasticity in traffic flow induced by heterogeneity in driving behavior
Xiaoyong Ni(倪晓勇), Hong Huang(黄弘). Chin. Phys. B, 2019, 28(9): 098901.
[9] Urban rail departure capacity analysis based on a cellular automaton model
Wen-Jun Li(李文俊), Lei Nie(聂磊). Chin. Phys. B, 2018, 27(7): 070204.
[10] Cellular automaton modeling of pedestrian movement behavior on an escalator
Fu-Rong Yue(岳芙蓉), Juan Chen(陈娟), Jian Ma(马剑), Wei-Guo Song(宋卫国), Siu-Ming Lo(卢兆明). Chin. Phys. B, 2018, 27(12): 124501.
[11] Traffic flow velocity disturbance characteristics and control strategy at the bottleneck of expressway
Jun-Wei Zeng(曾俊伟), Yong-Sheng Qian(钱勇生), Xu-Ting Wei(魏谞婷), Xiao Feng(冯骁). Chin. Phys. B, 2018, 27(12): 124502.
[12] Self-organized phenomena of pedestrian counterflow through a wide bottleneck in a channel
Li-Yun Dong(董力耘), Dong-Kai Lan(蓝冬恺), Xiang Li(李翔). Chin. Phys. B, 2016, 25(9): 098901.
[13] Effects of abnormal excitation on the dynamics of spiral waves
Min-Yi Deng(邓敏艺), Xue-Liang Zhang(张学良), Jing-Yu Dai(戴静娱). Chin. Phys. B, 2016, 25(1): 010504.
[14] A cellular automaton model for the ventricular myocardium considering the layer structure
Deng Min-Yi (邓敏艺), Dai Jing-Yu (戴静娱), Zhang Xue-Liang (张学良). Chin. Phys. B, 2015, 24(9): 090503.
[15] Effects of physical parameters on the cell-to-dendrite transition in directional solidification
Wei Lei (魏雷), Lin Xin (林鑫), Wang Meng (王猛), Huang Wei-Dong (黄卫东). Chin. Phys. B, 2015, 24(7): 078108.
No Suggested Reading articles found!