Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 098901    DOI: 10.1088/1674-1056/25/9/098901
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

Self-organized phenomena of pedestrian counterflow through a wide bottleneck in a channel

Li-Yun Dong(董力耘)1,2, Dong-Kai Lan(蓝冬恺)1, Xiang Li(李翔)1
1. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China;
2. Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai 200072, China
Abstract  The pedestrian counterflow through a bottleneck in a channel shows a variety of flow patterns due to self-organization. In order to reveal the underlying mechanism, a cellular automaton model was proposed by incorporating the floor field and the view field which reflects the global information of the studied area and local interactions with others. The presented model can well reproduce typical collective behaviors, such as lane formation. Numerical simulations were performed in the case of a wide bottleneck and typical flow patterns at different density ranges were identified as rarefied flow, laminar flow, interrupted bidirectional flow, oscillatory flow, intermittent flow, and choked flow. The effects of several parameters, such as the size of view field and the width of opening, on the bottleneck flow are also analyzed in detail. The view field plays a vital role in reproducing self-organized phenomena of pedestrian. Numerical results showed that the presented model can capture key characteristics of bottleneck flows.
Keywords:  counterflow      bottleneck      cellular automaton      flow patterns  
Received:  06 March 2016      Revised:  10 April 2016      Accepted manuscript online: 
PACS:  45.70.Mg (Granular flow: mixing, segregation and stratification)  
  05.65.+b (Self-organized systems)  
  07.05.Tp (Computer modeling and simulation)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB725404) and the National Natural Science Foundation of China (Grant Nos. 11172164 and 11572184).
Corresponding Authors:  Li-Yun Dong     E-mail:  dly@shu.edu.cn

Cite this article: 

Li-Yun Dong(董力耘), Dong-Kai Lan(蓝冬恺), Xiang Li(李翔) Self-organized phenomena of pedestrian counterflow through a wide bottleneck in a channel 2016 Chin. Phys. B 25 098901

[1] Helbing D 2001 Rev. Mod. Phys. 73 1067
[2] Kretz T, Grünebohm A, Kaufman M, Mazur F and Schreckenberg M 2006 J. Stat. Mech. P10001
[3] Helbing D and Molnár P 1995 Phys. Rev. E 51 4282
[4] Yu W J, Chen R, Dong L Y and Dai S Q 2005 Phys. Rev. E 72 026112
[5] Muramatsu M, Irie T and Nagatani T 1999 Physica A 267 487
[6] Tajima Y, Takimoto K and Nagatani T 2002 Physica A 313 709
[7] Li X, Duan X Y and Dong L Y 2012 Chin. Phys. B 21 108901
[8] Ma J, Song W G and Liao G X 2010 Chin. Phys. B 19 128901
[9] Li J, Yang L Z and Zhao D L 2005 Physica A 354 619
[10] Weng W G, Chen T, Yuan H Y and Fan W C 2006 Phys. Rev. E 74 036102
[11] Kuang H, Li X L, Song T and Dai S Q 2008 Phys. Rev. E 78 066117
[12] Zhou J W, Chen X L, Zhou J H, Tan H L, Kong L J and Liu M R 2009 Acta Phys. Sin. 58 2281 (in Chinese)
[13] Xiong T, Zhang P, Wong S C, Shu C W and Zhang M P 2011 Chin. Phys. Lett. 28 108901
[14] Li X and Dong L Y 2012 Chin. Phys. Lett. 29 098902
[15] Hoogendoorn S P, Daamen W and BovyP H L 2003 Pedestrian and Evacuation Dynamics , 2003 pp. 89-100
[16] Kretz T, Grünebohm A and Schreckenberg M 2006 J. Stat. Mech. P10014
[17] Kretz T, Wölki M and Schreckenberg M 2006 J. Stat. Mech. P02005
[18] Helbing D, Buzna L, Johansson A and Werner T 2005 Transport Sci 39 1
[19] Burstedde C, Klauck K, Schadschneider A and Zittartz J 2001 Physica A 295 507
[20] Kirchner A and Schadschneider A 2002 Physica A 312 260
[21] Song W G, Xu X, Wang B H and Ni S J 2006 Physica A 363 492
[22] Varas A, Cornejo M D, Mainemer D, Toledo, Rogan J, Munoz V and Valdivia J A 2007 Physica A 382 631
[23] Huang H J and Guo R Y 2008 Phys. Rev. E 78 021131
[24] Liu S B, Yang L Z, Fang T Y and Li J 2009 Physica A 388 1921
[25] Yue H, Guan H Z, Zhang J and Shao C F 2010 Physica A 389 527
[26] Alizadeh R 2011 Safety Sci. 49 315
[27] Zhang P, Jian X X, Wong S C and Choi K 2012 Phys. Rev. E 85 021119
[28] Tian H H, Dong L Y and Xue Y 2015 Physica A 420 164
[29] Tajima Y, Takimoto K and Nagatani T 2001 Physica A 294 257
[30] Yu W J and Johansson A 2007 Phys. Rev. E 76 046105
[31] Guo R Y 2014 Physica A 415 428
[1] Numerical simulation on dendritic growth of Al-Cu alloy under convection based on the cellular automaton lattice Boltzmann method
Kang-Wei Wang(王康伟), Meng-Wu Wu(吴孟武), Bing-Hui Tian(田冰辉), and Shou-Mei Xiong(熊守美). Chin. Phys. B, 2022, 31(9): 098105.
[2] Nonvanishing optimal noise in cellular automaton model of self-propelled particles
Guang-Le Du(杜光乐) and Fang-Fu Ye(叶方富). Chin. Phys. B, 2022, 31(8): 086401.
[3] Simulation of crowd dynamics in pedestrian evacuation concerning panic contagion: A cellular automaton approach
Guan-Ning Wang(王冠宁), Tao Chen(陈涛), Jin-Wei Chen(陈锦炜), Kaifeng Deng(邓凯丰), and Ru-Dong Wang(王汝栋). Chin. Phys. B, 2022, 31(6): 060402.
[4] Influence of bottleneck on single-file pedestrian flow: Findings from two experiments
Cheng-Jie Jin(金诚杰), Rui Jiang(姜锐), Da-Wei Li(李大韦). Chin. Phys. B, 2020, 29(8): 088902.
[5] Simulation-based optimization of inner layout of a theater considering the effect of pedestrians
Qing-Fei Gao(高庆飞), Yi-Zhou Tao(陶亦舟), Yan-Fang Wei(韦艳芳), Cheng Wu(吴成), Li-Yun Dong(董力耘). Chin. Phys. B, 2020, 29(3): 034501.
[6] Analyzing floor-stair merging flow based on experiments and simulation
Yu Zhu(朱萸), Tao Chen(陈涛), Ning Ding(丁宁), Wei-Cheng Fan(范维澄). Chin. Phys. B, 2020, 29(1): 010401.
[7] A new cellular automaton model accounting for stochasticity in traffic flow induced by heterogeneity in driving behavior
Xiaoyong Ni(倪晓勇), Hong Huang(黄弘). Chin. Phys. B, 2019, 28(9): 098901.
[8] Urban rail departure capacity analysis based on a cellular automaton model
Wen-Jun Li(李文俊), Lei Nie(聂磊). Chin. Phys. B, 2018, 27(7): 070204.
[9] Cellular automaton modeling of pedestrian movement behavior on an escalator
Fu-Rong Yue(岳芙蓉), Juan Chen(陈娟), Jian Ma(马剑), Wei-Guo Song(宋卫国), Siu-Ming Lo(卢兆明). Chin. Phys. B, 2018, 27(12): 124501.
[10] Bottleneck effects on the bidirectional crowd dynamics
Xiao-Xia Yang(杨晓霞), Hai-Rong Dong(董海荣), Xiu-Ming Yao(姚秀明), Xu-Bin Sun(孙绪彬). Chin. Phys. B, 2016, 25(12): 128901.
[11] Effects of abnormal excitation on the dynamics of spiral waves
Min-Yi Deng(邓敏艺), Xue-Liang Zhang(张学良), Jing-Yu Dai(戴静娱). Chin. Phys. B, 2016, 25(1): 010504.
[12] A cellular automaton model for the ventricular myocardium considering the layer structure
Deng Min-Yi (邓敏艺), Dai Jing-Yu (戴静娱), Zhang Xue-Liang (张学良). Chin. Phys. B, 2015, 24(9): 090503.
[13] Effects of physical parameters on the cell-to-dendrite transition in directional solidification
Wei Lei (魏雷), Lin Xin (林鑫), Wang Meng (王猛), Huang Wei-Dong (黄卫东). Chin. Phys. B, 2015, 24(7): 078108.
[14] Colloidal monolayer self-assembly and its simulation via cellular automaton model
Wu Yi-Zhi (吴以治), Chen Chen (陈晨), Xu Xiao-Liang (许小亮), Liu Yun-Xi (刘赟夕), Shao Wei-Jia (邵伟佳), Yin Nai-Qiang (尹乃强), Zhang Wen-Ting (张文婷), Ke Jia-Xin (柯佳鑫), Fang Xiao-Tian (方啸天). Chin. Phys. B, 2014, 23(8): 088703.
[15] On the modeling of synchronized flow in cellular automaton models
Jin Cheng-Jie (金诚杰), Wang Wei (王炜), Jiang Rui (姜锐). Chin. Phys. B, 2014, 23(2): 024501.
No Suggested Reading articles found!