Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 010401    DOI: 10.1088/1674-1056/ab5788
GENERAL Prev   Next  

Analyzing floor-stair merging flow based on experiments and simulation

Yu Zhu(朱萸)1,2, Tao Chen(陈涛)1,2, Ning Ding(丁宁)3,4, Wei-Cheng Fan(范维澄)1,2
1 Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
2 Beijing Key Laboratory of City Integrated Emergency Response Science, Beijing 100084, China;
3 School of Criminal Investigation and Counter-Terrorism, People's Public Security University of China, Beijing 100038, China;
4 Public Security Behavioral Science Laboratory, People's Public Security University of China, Beijing 100038, China
Abstract  In most situations, staircase is the only egress to evacuate from high-rise buildings. The merging flow on the stair landing has a great influence on the evacuation efficiency. In this paper, we develop an improved cellular automaton model to describe the merging behavior, and the model is validated by a series of real experiments. It is found that the flow rate of simulation results is similar to the drills, which means that the improved model is reasonable and can be used to describe the merging behavior on stairs. Furthermore, some scenarios with different door locations and building floor numbers are simulated by the model. The results show that (i) the best door location is next to the upward staircase; (ii) the total evacuation time and the building floor number are linearly related to each other; (iii) the pedestrians on upper floors have a negative influence on the evacuation flow rate.
Keywords:  evacuation dynamics      merging flow      stair simulation      cellular automaton      high-rise buildings  
Received:  08 July 2019      Revised:  02 October 2019      Accepted manuscript online: 
PACS:  04.25.dc (Numerical studies of critical behavior, singularities, and cosmic censorship)  
  95.75.-z (Observation and data reduction techniques; computer modeling and simulation)  
  47.11.-j (Computational methods in fluid dynamics)  
  89.60.-k (Environmental studies)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFC0803300 and 2017YFC0820400) and the National Natural Science Foundation of China (Grant No. 71673163).
Corresponding Authors:  Ning Ding     E-mail:

Cite this article: 

Yu Zhu(朱萸), Tao Chen(陈涛), Ning Ding(丁宁), Wei-Cheng Fan(范维澄) Analyzing floor-stair merging flow based on experiments and simulation 2020 Chin. Phys. B 29 010401

[1] Ronchi E and Nilsson D 2013 Fire Sci. Rev. 2 7
[2] Craesmeyer M and Schadschneider A 2014 Transp. Res. Procedia 2 406
[3] Cuesta A, Abreu O, Balboa A and Alvear D 2017 Tunnelling Underground Space Technol. 70 155
[4] Aghabayk K, Ejtemai O, Sarvi M and Sobhani A 2014 Transp. Res. Procedia 2 768
[5] Shi X, Ye Z, Shiwakoti N, Tang D, Wang C and Wang W 2016 Accid. Anal. Prev. 95 405
[6] Lian L, Mai X, Song W, Richard Y K K, Rui Y and Jin S 2017 Fire Saf. J. 91 918
[7] Chen M M, Wang J H, Zhi Y R and Gao L J 2018 Procedia Eng. 211 70
[8] Xu X and Song W 2009 Build. Environ. 44 1039
[9] Galea E R, Sharp G and Lawrence P J 2008 J. Fire Prot. Eng. 18 291
[10] Ding Y, Yang L and Rao P 2013 Procedia Eng. 62 463
[11] Boyce K E, Purser D A and Shields T J 2012 Fire Mater. 36 383
[12] Huo F, Song W, Lv W and Liew K M 2014 Simulation 90 501
[13] Huo F, Song W, Chen L, Liu C and Liew K M 2016 Saf. Sci. 86 165
[14] Sano T, Ronchi E, Minegishi Y and Nilsson D 2017 Fire Saf. J. 89 77
[15] Yang L Z, Zhao D L, Li J and Fang T Y 2005 Build. Environ. 40 411
[16] Weng W G, Chen T, Yuan H Y and Fan W C 2006 Phys. Rev. E 74 036102
[17] Qiu G, Song R, He S and Yin W 2018 Phys. A: Stat. Mech. Its Appl. 508 199
[18] Shi M, Lee E W M and Ma Y 2018 Phys. A: Stat. Mech. Its Appl. 497 198
[19] Zhao D L, Li J, Zhu Y and Zou L 2008 Build. Environ. 43 518
[20] Zheng X P, Zhong T K and Liu M T 2009 Build. Environ. 44 437
[21] Yue F R, Chen J, Ma J, Song W G and Lo S M 2018 Chin. Phys. B 27 124501
[22] Chen Y Z, Li M, Jiang R and Hu M B 2018 Chin. Phys. B 27 088901
[23] Chen R, Li X and Dong L Y 2013 Physica A 392 2847
[24] Feng S M, Ding N, Chen T and Zhang H 2013 Physica A 392 2847
[25] Xu Y, Huang H J and Yong G 2012 Chin. Phys. Lett. 29 080502
[26] Lin P, Ma J and Lo S 2016 Chin. Phys. B 25 034501
[27] Hu J and You L 2017 Building Simul. 10 407
[28] Sun Z, Jia B and Li X G 2012 Acta Phys. Sin. 61 100508 (in Chinese)
[29] Li W J and Nie L 2018 Chin. Phys. B 27 070204
[30] Dong L Y, Lan D K and Li X 2016 Chin. Phys. B 25 098901
[31] Ding N, Chen T and Zhang H 2017 Building Simul. 10 407
[32] Jin H and Guo R Y 2019 Acta Phys. Sin. 68 020501 (in Chinese)
[33] Ning D, Hui Z, Tao C and Luh P B 2015 Chin. Phys. B 24 068801
[34] Ding N, Chen T, Zhang H and Luh P B 2014 Traffic and Granular Flow'13 pp. 145-153
[1] Numerical simulation on dendritic growth of Al-Cu alloy under convection based on the cellular automaton lattice Boltzmann method
Kang-Wei Wang(王康伟), Meng-Wu Wu(吴孟武), Bing-Hui Tian(田冰辉), and Shou-Mei Xiong(熊守美). Chin. Phys. B, 2022, 31(9): 098105.
[2] Nonvanishing optimal noise in cellular automaton model of self-propelled particles
Guang-Le Du(杜光乐) and Fang-Fu Ye(叶方富). Chin. Phys. B, 2022, 31(8): 086401.
[3] Simulation of crowd dynamics in pedestrian evacuation concerning panic contagion: A cellular automaton approach
Guan-Ning Wang(王冠宁), Tao Chen(陈涛), Jin-Wei Chen(陈锦炜), Kaifeng Deng(邓凯丰), and Ru-Dong Wang(王汝栋). Chin. Phys. B, 2022, 31(6): 060402.
[4] Simulation-based optimization of inner layout of a theater considering the effect of pedestrians
Qing-Fei Gao(高庆飞), Yi-Zhou Tao(陶亦舟), Yan-Fang Wei(韦艳芳), Cheng Wu(吴成), Li-Yun Dong(董力耘). Chin. Phys. B, 2020, 29(3): 034501.
[5] A new cellular automaton model accounting for stochasticity in traffic flow induced by heterogeneity in driving behavior
Xiaoyong Ni(倪晓勇), Hong Huang(黄弘). Chin. Phys. B, 2019, 28(9): 098901.
[6] Urban rail departure capacity analysis based on a cellular automaton model
Wen-Jun Li(李文俊), Lei Nie(聂磊). Chin. Phys. B, 2018, 27(7): 070204.
[7] Cellular automaton modeling of pedestrian movement behavior on an escalator
Fu-Rong Yue(岳芙蓉), Juan Chen(陈娟), Jian Ma(马剑), Wei-Guo Song(宋卫国), Siu-Ming Lo(卢兆明). Chin. Phys. B, 2018, 27(12): 124501.
[8] Constant evacuation time gap:Experimental study and modeling
Ning Guo(郭宁), Rui Jiang(姜锐), Mao-Bin Hu(胡茂彬), Jian-Xun Ding(丁建勋). Chin. Phys. B, 2017, 26(12): 120506.
[9] Self-organized phenomena of pedestrian counterflow through a wide bottleneck in a channel
Li-Yun Dong(董力耘), Dong-Kai Lan(蓝冬恺), Xiang Li(李翔). Chin. Phys. B, 2016, 25(9): 098901.
[10] Effects of abnormal excitation on the dynamics of spiral waves
Min-Yi Deng(邓敏艺), Xue-Liang Zhang(张学良), Jing-Yu Dai(戴静娱). Chin. Phys. B, 2016, 25(1): 010504.
[11] A cellular automaton model for the ventricular myocardium considering the layer structure
Deng Min-Yi (邓敏艺), Dai Jing-Yu (戴静娱), Zhang Xue-Liang (张学良). Chin. Phys. B, 2015, 24(9): 090503.
[12] Effects of physical parameters on the cell-to-dendrite transition in directional solidification
Wei Lei (魏雷), Lin Xin (林鑫), Wang Meng (王猛), Huang Wei-Dong (黄卫东). Chin. Phys. B, 2015, 24(7): 078108.
[13] Stair evacuation simulation based on cellular automataconsidering evacuees' walk preferences
Ding Ning (丁宁), Zhang Hui (张辉), Chen Tao (陈涛), Peter B. Luh. Chin. Phys. B, 2015, 24(6): 068801.
[14] Colloidal monolayer self-assembly and its simulation via cellular automaton model
Wu Yi-Zhi (吴以治), Chen Chen (陈晨), Xu Xiao-Liang (许小亮), Liu Yun-Xi (刘赟夕), Shao Wei-Jia (邵伟佳), Yin Nai-Qiang (尹乃强), Zhang Wen-Ting (张文婷), Ke Jia-Xin (柯佳鑫), Fang Xiao-Tian (方啸天). Chin. Phys. B, 2014, 23(8): 088703.
[15] On the modeling of synchronized flow in cellular automaton models
Jin Cheng-Jie (金诚杰), Wang Wei (王炜), Jiang Rui (姜锐). Chin. Phys. B, 2014, 23(2): 024501.
No Suggested Reading articles found!