Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 070204    DOI: 10.1088/1674-1056/27/7/070204
GENERAL Prev   Next  

Urban rail departure capacity analysis based on a cellular automaton model

Wen-Jun Li(李文俊), Lei Nie(聂磊)
School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China
Abstract  As an important traffic mode, urban rail transit is constantly developing toward improvement in service capacity and quality. When an urban rail transit system is evaluated in terms of its service capacity, the train departure capacity is an important index that can objectively reflect the service level of an urban rail transit facility. In light of the existing cellular automaton models, this paper proposes a suitable cellular automaton model to analyze the train departure capacity of urban rail transit under different variable factors and conditions. The established model can demonstrate the train operating processes by implementing the proposed sound rules, including the rules of train departure at the origin and intermediate stations, and the velocity and position updating rules. The properties of train traffic are analyzed via numerical experiments. The numerical results show that the departure capacity is negatively affected by the train departure control manner. In addition, (i) the real-time signal control can offer a higher train service frequency; (ii) the departure capacity gradually rises with the decrease in the line design speed to a limited extent; (iii) the departure capacity decreases with extension in the train length; (iv) the number of departed trains decreases as the train stop time increases; (v) the departure capacity is not affected by the section length. However, the longer the length, the worse the service quality of the urban rail transit line. The experiments show that the proposed cellular automaton model can be used to analyze the train service capacity of an urban rail transit system by performing quantitative analysis under various considered factors, conditions, and management modes.
Keywords:  train departure capacity      urban rail transit      cellular automaton model  
Received:  20 September 2017      Revised:  10 March 2018      Accepted manuscript online: 
PACS:  02.70.Uu (Applications of Monte Carlo methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. U1434207).
Corresponding Authors:  Lei Nie     E-mail:  lnie8509@yahoo.com

Cite this article: 

Wen-Jun Li(李文俊), Lei Nie(聂磊) Urban rail departure capacity analysis based on a cellular automaton model 2018 Chin. Phys. B 27 070204

[1] Gupta A K and Sharma S 2012 Chin. Phys. B 21 015201
[2] Gupta A K and Redhu P 2013 Phys. Lett. A 377 2027
[3] Gupta A K 2013 Int. J. Mod. Phys. C 24 1350018
[4] Gupta A K and Dhiman I 2014 Int. J. Mod. Phys. C 25 1450045
[5] Gupta A K, Sharma S and Redhu P 2014 Commun. Theor. Phys. 62 393
[6] Gupta A K and Redhu P 2015 Physica A 421 249
[7] Hino Y and Nagatani T 2014 Physica A 395 425
[8] Nagatani T and Hino Y 2014 Physica A 403 110
[9] Yang S C, Deng C, Tang T Q and Qian Y S 2013 Nonlinear Dyn. 71 323
[10] Nagatani T 2015 Physica A 427 92
[11] Hino Y and Nagatani T 2015 Physica A 428 416
[12] Ge H X, Lai L L, Zheng P J and Cheng R J 2013 Phys. Lett. A 377 3193
[13] Ge H X, Zheng P J, Lo S M and Cheng R J 2014 Nonlinear Dyn. 76 441
[14] Lai L L, Cheng R J, Li Z P and Ge H X 2014 Physica A 402 283
[15] Zhu W X 2013 Physica A 392 4787
[16] Zhu W X and Zhang C H 2013 Physica A 392 3301
[17] Zhang L D, Zhu W X and Liu J L 2014 Physica A 406 89
[18] Li Y F, Zhang L, Zheng H, He X Z, Peeta S, Zheng T X and Li Y G 2017 IEEE Tran. Intell. Transp. 99 1
[19] Tang T Q, Xu K W, Yang S C and Ding C 2016 Physica A 441 221
[20] Tang T Q, Shi W F, Shang H Y and Wang Y P 2014 Nonlinear Dyn. 76 2017
[21] Tang T Q, Shi W F, Yang S C and Shang H Y 2015 Mod. Phys. Lett. B 29 1550020
[22] Tang T Q, Xu K W, Yang S C and Shang H Y 2015 Measurement 59 30
[23] Tang T Q, Yu Q, Yang S C and Ding C 2015 Mod. Phys. Lett. B 29 1550157
[24] Qian Y S, Zhang X L, Zeng J W, Shao X M and Wang N 2015 Mod. Phys. Lett. B 29 1450264
[25] Qian Y S, Shao X M, Zeng J W and Wang M 2013 Physica A 392 5874
[26] Xue Y, Qian Y S, Guang X P, Zeng J W and Jia Z L 2013 Mod. Phys. Lett. B 27 1350090
[27] Wang M, Zeng J W, Qian Y S, Li W J, Yang F and Jia X X 2012 Chin. Phys. B 21 070502
[28] Tang T Q, Li J G, Yang S C and Shang H Y 2015 Physica A 419 293
[29] Qian Y S, Zeng J W, Wang N, Zhang J L and Wang B B 2017 Nonlinear Dyn. 89 1099
[30] Tang T Q, Huang H J and Shang H Y 2015 Transp. Res. D 41 423
[31] Tang T Q, Xu K W, Yang S C and Shang H Y 2016 Mod. Phys. Lett. B 30 1650084
[32] Tang T Q, Shi W F, Shang H Y and Wang Y P 2014 Measurement 58 286
[33] Mei C Q, Huang H J and Tang T Q 2009 Acta Phys. Sin. 58 3014 (in Chinese)
[34] Sheng P, Zhao S L, Wang J F and Zuo H 2010 Acta Phys. Sin. 59 3831 (in Chinese)
[35] Zheng L, Ma S F and Jia N 2010 Acta Phys. Sin. 59 4490 (in Chinese)
[36] Li Q L, Sun X Y, Wang B H and Liu M R 2010 Acta Phys. Sin. 59 5996 (in Chinese)
[37] Wen J, Tian H H, Kan S J and Xue Y 2010 Acta Phys. Sin. 59 7693 (in Chinese)
[38] 38. Qian Y S, Zeng J W, Du J W, Liu Y F, Wang M and Wei J 2011 Acta Phys. Sin. 60 060505 (in Chinese)
[39] Li K P, Gao Z Y and Ning B 2005 Physica C 16 921
[40] Ning B, Li K P and Gao Z Y 2005 Physica C 16 1793
[41] Zhou H L, Gao Z Y and Li K P 2006 Commum. Comput. Phys. 1 494
[42] Zhou H L, Gao Z Y and Li K P 2006 Acta Phys. Sin. 55 1706 (in Chinese)
[43] Xun J, Ning B and Li K P 2007 Acta Phys. Sin. 56 5158 (in Chinese)
[44] Wang H L and Qian Y S 2008 Railway Transport and Economy 30 82 (in Chinese)
[45] Li K P, Gao Z Y and Mao B H 2007 Chin. Phys. 16 1
[46] Li F, Gao Z Y and Li K P 2007 Acta Phys. Sin. 56 3158 (in Chinese)
[47] Fu Y P, Gao Z Y and Li K P 2007 Acta Phys. Sin. 56 5165 (in Chinese)
[1] Weighted mean velocity feedback strategy in intelligent two-route traffic systems
Xiang Zheng-Tao (向郑涛), Xiong Li (熊励). Chin. Phys. B, 2013, 22(2): 028901.
[2] Properties of train traffic flow in moving block system
Wang Min(王敏), Zeng Jun-Wei(曾俊伟), Qian Yong-Sheng(钱勇生), Li Wen-Jun(李文俊), Yang Fang(杨芳), and Jia Xin-Xin(贾欣欣) . Chin. Phys. B, 2012, 21(7): 070502.
[3] A traffic flow cellular automaton model to considering drivers' learning and forgetting behaviour
Ding Jian-Xun(丁建勋), Huang Hai-Jun(黄海军), and Tian Qiong(田琼). Chin. Phys. B, 2011, 20(2): 028901.
[4] Traffic dynamics of an on-ramp system with a cellular automaton model
Li Xin-Gang(李新刚), Gao Zi-You(高自友), Jia Bin(贾斌), and Jiang Rui(姜锐). Chin. Phys. B, 2010, 19(6): 060501.
[5] Traffic flow of a roundabout crossing with an open boundary condition
Bai Ke-Zhao(白克钊),Tan Hui-Li(谭惠丽), Kong Ling-Jiang(孔令江), and Liu Mu-Ren(刘慕仁). Chin. Phys. B, 2010, 19(4): 040510.
[6] Combined bottleneck effect of on-ramp and bus stop in a cellular automaton model
Song Yu-Kun(宋玉鲲) and Zhao Xiao-Mei(赵小梅). Chin. Phys. B, 2009, 18(12): 5242-5248.
[7] Instantaneous information propagation in free flow, synchronized flow, stop-and-go waves in a cellular automaton model
Jiang Rui(姜锐), Jin Wen-Long(金文龙), and Wu Qing-Song(吴清松) . Chin. Phys. B, 2008, 17(3): 829-835.
[8] An implementation of cellular automaton model for single-line train working diagram
Hua Wei (花伟), Liu Jun. Chin. Phys. B, 2006, 15(4): 687-691.
No Suggested Reading articles found!