Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 108903    DOI: 10.1088/1674-1056/addaa2
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Extracting fuzzy clusters from massive attributed graphs using Markov lumpability optimization

Kai-Yue Jiang(蒋凯悦)1,†, Li-Heng Xu(徐力恒)1,†, Shi-Pei Lin(林诗佩)1,†, Li-Yang Zhou(周李阳)1,†, Hui-Jia Li(李慧嘉)1,‡, and Ge Gao(高歌)2,§
1 School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin 300074, China;
2 Management School, Beijing Sport University, Beijing 100084, China
Abstract  Attributed graph clustering plays a vital role in uncovering hidden network structures, but it presents significant challenges. In recent years, various models have been proposed to identify meaningful clusters by integrating both structural and attribute-based information. However, these models often emphasize node proximities without adequately balancing the efficiency of clustering based on both structural and attribute data. Furthermore, they tend to neglect the critical fuzzy information inherent in attributed graph clusters. To address these issues, we introduce a new framework, Markov lumpability optimization, for efficient clustering of large-scale attributed graphs. Specifically, we define a lumped Markov chain on an attribute-augmented graph and introduce a new metric, Markov lumpability, to quantify the differences between the original and lumped Markov transition probability matrices. To minimize this measure, we propose a conjugate gradient projection-based approach that ensures the partitioning closely aligns with the intrinsic structure of fuzzy clusters through conditional optimization. Extensive experiments on both synthetic and real-world datasets demonstrate the superior performance of the proposed framework compared to existing clustering algorithms. This framework has many potential applications, including dynamic community analysis of social networks, user profiling in recommendation systems, functional module identification in biological molecular networks, and financial risk control, offering a new paradigm for mining complex patterns in high-dimensional attributed graph data.
Keywords:  attributed clustering      Markov chain      lumped random walk      fuzzy clusters      optimization  
Received:  07 March 2025      Revised:  11 May 2025      Accepted manuscript online:  20 May 2025
PACS:  89.75.Da (Systems obeying scaling laws)  
  02.50.Ey (Stochastic processes)  
  07.05.Tp (Computer modeling and simulation)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
Fund: This work is supported by the National Natural Science Foundation of China (Grant No. 72571150) and Beijing Natural Science Foundation (Grant No. 9182015).
Corresponding Authors:  Hui-Jia Li, Ge Gao     E-mail:  hjli@nankai.edu.cn;gaoge@bsu.edu.cn

Cite this article: 

Kai-Yue Jiang(蒋凯悦), Li-Heng Xu(徐力恒), Shi-Pei Lin(林诗佩), Li-Yang Zhou(周李阳), Hui-Jia Li(李慧嘉), and Ge Gao(高歌) Extracting fuzzy clusters from massive attributed graphs using Markov lumpability optimization 2025 Chin. Phys. B 34 108903

[1] Xiao C, Xu X, Lei Y, Zhang K, Liu S and Zhou F 2023 IEEE Trans. Knowl. Data Eng. 35 10540
[2] Qin M, Zhang C, Bai B, Zhang G and Yeung D Y 2023 ACM Trans. Knowl. Discov. Data 17 1
[3] Qiu R, Yin H, Huang Z and Chen T 2020 Proc. 43rd Int. ACM SIGIR Conf. Res. Dev. Inf. Retr. 669
[4] Kargar M, Zihayat M and Szlichta J 2019 Proc. 29th Annu. Int. Conf- Comput. Sci. Sofw. Eng. 19 397
[5] Albert R and Barabasi A L 2002 Rev. Mod. Phys. 74 47
[6] Yang Y, Su X, Zhao B, Li G, Hu P, Zhang J and Hu L 2024 IEEE Trans. Fuzzy Syst. 32 1951
[7] Li H J, Feng Y, Xia C and Cao J 2024 ACM Trans. Knowl. Discov. Data 18 1
[8] Li H J, Cao H, Feng Y, Li X and Pei J 2024 IEEE Trans. Knowl. Data Eng. 36 11
[9] He C, Liu S, Zhang L and Zheng J 2019 J. Ambient Intell. Humaniz. Comput. 10 3399
[10] Xie X X, Huo L A, Dong Y F and Cheng Y Y 2024 Chin. Phys. B 33 038704
[11] Hu X, Chen J X and Cheng Y 2024 Chin. Phys. B 33 100202
[12] Qiu L, Jia W, Yu J, Fan X and Gao W 2019 IEEE Access 7 62511
[13] Tu W, Liu X, Zhou S, Li M, Zhu E, Liu L, Zhang C and Yin J 2021 Proc AAAI Conf. Artif. Intell. 35 9978
[14] Yang Y, Su X, Zhao B, Li G, Peng W, Zhang J and Hu L 2023 IEEE Trans. Fuzzy Syst. 32 4
[15] Pons P and Latapy M 2006 J. Graph Algorithms Appl. 10 191
[16] Hu L, Yang Y, Tang Z, He Y and Luo X 2023 IEEE Trans. Fuzzy Syst. 31 10
[17] Ahmed M, Seraj R and Islam S M S 2020 Electronics 9 1295
[18] Grohe M and Schweitzer P 2020 Commun. ACM 63 128
[19] Ikotun A M, Ezugwu A E, Abualigah L, Abuhaija B and Heming J 2023 Inf. Sci. 622 178
[20] Talaei Khoei T, Ould Slimane H and Kaabouch N 2023 Neural Comput. Appl. 35 23103
[21] Mohammed A and Kora R 2023 J. King Saud Univ. - Comput. Inf. Sci. 35 757
[22] Anwar S, Azeem M, Jamil M K, Almohsen B and Shang Y 2024 J. Supercomput. 80 19976
[23] Huo L A and Yu Y 2023 Chin. Phys. B 32 108703
[24] Gretton A, Bousquet O, Smola A and Scholkopf B 2005 Int. Conf. Algorithmic Learn. Theory 63
[25] Nazareth J L 2009 Wiley Interdiscip. Rev.: Comput. Stat. 80 19976
[26] Hashem I, Alaba F, Jumare M, Ibrahim A and Abulfaraj A 2024 IEEE Access 12 33757
[27] E W, Li T and Vanden-Eijnden E 2008 Proc. Natl. Acad. Sci. USA 105 7907
[28] Zhou S, Liu X, Li M, Zhu E, Liu L, Zhang C and Yin J 2019 IEEE Trans. Neural Netw. Learn. Syst. 31 1351
[29] Wang S, Liu X, Liu L, Zhou S and Zhu E 2023 IEEE Trans. Neural Netw. Learn. Syst. 34 4359
[30] Wang S, Liu X, Zhu X, Zhang P, Zhang Y, Gao F and Zhu E 2021 IEEE Trans. Image Process. 31 556
[31] Berahmand K, Mohammadi M, Saberi-Movahed F, Li Y and Xu Y 2023 IEEE Trans. Netw. Sci. Eng. 10 372
[32] Rohan H R K and Sahadath M H 2023 Prog. Nucl. Energy 164 104849
[33] Cui G, Zhou J, Yang C and Liu Z 2020 Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discov. & Data Mining 976
[34] Li Y, Wang P, Li Z, Yu J X and Li J 2024 Proc. 30th ACM SIGKDD Conf. Knowl. Discov. Data Min. 1725
[35] Temsah M H, Altamimi I, Jamal A, Alhasan K and Al-Eyadhy 2023 Cureus 15 9
[36] Peng Z, Liu H, Jia Y and Hou J 2022 IEEE Trans. Circuits Syst. Video Technol. 33 3296
[37] Yang X, Liu Y, Zhou S, Wang S, Tu W, Zheng Q, Liu X, Fang L and Zhu E 2023 Proc. AAAI Conf. Artif. Intell. 37 10834
[38] Cunha W, Viegas F, França C, Rosa T, Rocha L and Gonçalves M A 2023 ACM Comput. Surv. 55 1
[39] Liu Y, Tu W, Zhou S, Liu X, Song L, Yang X and Zhu E 2022 AAAI Conf. Artif. Intell. 2022
[40] Wu X, Hu J, Zhang A, Quan Y, Miao Q and Sun P G 2024 arXiv:2408.09790
[41] Li H J, Song S, Tan W, Huang Z, Li X, Xu W and Cao J 2022 Neurocomputing 512 482
[1] High-entropy alloys in synergistic electrocatalytic conversion applications
Hui Zhang(张辉), Zhengxiong Liu(刘争雄), Le Fang(方乐), Yin Wang(王音), Shuai Chen(陈帅), and Wei Ren(任伟). Chin. Phys. B, 2025, 34(8): 086109.
[2] Progressive quantum algorithm for maximum independent set with quantum alternating operator ansatz
Xiao-Hui Ni(倪晓慧), Ling-Xiao Li(李凌霄), Yan-Qi Song(宋燕琪), Zheng-Ping Jin(金正平), Su-Juan Qin(秦素娟), and Fei Gao(高飞). Chin. Phys. B, 2025, 34(7): 070304.
[3] Optimal synchronization of higher-order Kuramoto model on hypergraphs
Chong-Yang Wang(王重阳), Bi-Yun Ji(季碧芸), and Linyuan Lü(吕琳媛). Chin. Phys. B, 2025, 34(7): 070502.
[4] Sub-Doppler cooling of magnesium fluoride molecules
Jin Wei(魏晋), Di Wu(吴迪), Taojing Dong(董涛晶), Chenyu Zu(祖晨宇), Yong Xia(夏勇), and Jianping Yin(印建平). Chin. Phys. B, 2025, 34(6): 063701.
[5] Finite element analysis of the impact of graphene filler dispersion on local hotspots in HMX-based PBX explosives
Xuanyi Yang(杨烜屹), Xin Huang(黄鑫), Chaoyang Zhang(张朝阳), Yanqing Wang(王延青), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2025, 34(5): 054401.
[6] Graph distillation with network symmetry
Feng Lin(林峰) and Jia-Lin He(何嘉林). Chin. Phys. B, 2025, 34(4): 040204.
[7] Robust quantum gate optimization with first-order derivatives of ion-phonon and ion-ion couplings in trapped ions
Jing-Bo Wang(汪景波). Chin. Phys. B, 2025, 34(4): 040302.
[8] Broadband polarization-independent terahertz multifunctional liquid crystal coding metasurface based on topological optimization
Yu Chen(陈羽), Wu-Hao Cao(曹吴昊), Jia-Qi Li(李嘉琦), Ming-Zhe Zhang(张明哲), Xin-Yi Du(杜欣怡), Ding-Shan Gao(郜定山), and Pei-Li Li(李培丽). Chin. Phys. B, 2025, 34(4): 044205.
[9] Impact of message fatigue and individual behavioral responses on epidemiological spread in temporal simplicial networks
Xiao-Nan Fan(樊晓楠) and Xuemei You(由雪梅). Chin. Phys. B, 2025, 34(3): 038703.
[10] Neural network analysis for prediction of heat transfer of aqueous hybrid nanofluid flow in a variable porous space with varying film thickness over a stretched surface
Abeer S Alnahdi and Taza Gul. Chin. Phys. B, 2025, 34(2): 024701.
[11] Optimization strategies for operational parameters of Rydberg atom-based amplitude modulation receiver
Yuhao Wu(吴宇豪), Dongping Xiao(肖冬萍), Huaiqing Zhang(张淮清), and Sheng Yan(阎晟). Chin. Phys. B, 2025, 34(1): 013201.
[12] Combining deep reinforcement learning with heuristics to solve the traveling salesman problem
Li Hong(洪莉), Yu Liu(刘宇), Mengqiao Xu(徐梦俏), and Wenhui Deng(邓文慧). Chin. Phys. B, 2025, 34(1): 018705.
[13] Multi-objective global optimization approach predicted quasi-layered ternary TiOS crystals with promising photocatalytic properties
Yi-Jie Xiang(向依婕), Siyan Gao(高思妍), Chunlei Wang(王春雷), Haiping Fang(方海平), Xiangmei Duan(段香梅), Yi-Feng Zheng(郑益峰), and Yue-Yu Zhang(张越宇). Chin. Phys. B, 2024, 33(8): 087101.
[14] Performance optimization of a SERF atomic magnetometer based on flat-top light beam
Ziqi Yuan(袁子琪), Junjian Tang(唐钧剑), Shudong Lin(林树东), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2024, 33(6): 060703.
[15] Quafu-Qcover: Explore combinatorial optimization problems on cloud-based quantum computers
Hong-Ze Xu(许宏泽), Wei-Feng Zhuang(庄伟峰), Zheng-An Wang(王正安), Kai-Xuan Huang(黄凯旋), Yun-Hao Shi(时运豪), Wei-Guo Ma(马卫国), Tian-Ming Li(李天铭), Chi-Tong Chen(陈驰通), Kai Xu(许凯), Yu-Long Feng(冯玉龙), Pei Liu(刘培), Mo Chen(陈墨), Shang-Shu Li(李尚书), Zhi-Peng Yang(杨智鹏), Chen Qian(钱辰), Yu-Xin Jin(靳羽欣), Yun-Heng Ma(马运恒), Xiao Xiao(肖骁), Peng Qian(钱鹏), Yanwu Gu(顾炎武), Xu-Dan Chai(柴绪丹), Ya-Nan Pu(普亚南), Yi-Peng Zhang(张翼鹏), Shi-Jie Wei(魏世杰), Jin-Feng Zeng(增进峰), Hang Li(李行), Gui-Lu Long(龙桂鲁), Yirong Jin(金贻荣), Haifeng Yu(于海峰), Heng Fan(范桁), Dong E. Liu(刘东), and Meng-Jun Hu(胡孟军). Chin. Phys. B, 2024, 33(5): 050302.
No Suggested Reading articles found!