Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 090503    DOI: 10.1088/1674-1056/24/9/090503
GENERAL Prev   Next  

A cellular automaton model for the ventricular myocardium considering the layer structure

Deng Min-Yi (邓敏艺), Dai Jing-Yu (戴静娱), Zhang Xue-Liang (张学良)
College of Physical Science and Technology, Guangxi Normal University, Guilin 541004, China
Abstract  A cellular automaton model for the ventricular myocardium considering the layer structure has been established. The three types of cells in this model differ principally in the repolarization characteristics. For the normal travelling waves in this model, the computer simulation results show the R, S, and T waves and they are qualitatively in agreement with the standard electrocardiograph. Phenomena such as the potential decline of point J and segment ST and the rise of the potential line after the T wave appear when the ischemia occurs in the endocardium. The spiral wave has also been simulated, and the corresponding potential has a lower amplitude, higher frequency, and wider R wave, which accords with the distinguishing feature of the clinical electrocardiograph. Mechanisms underlying the above phenomena are analyzed briefly.
Keywords:  cellular automaton      electrocardiograph      ischemia      spiral wave  
Received:  03 February 2015      Revised:  24 March 2015      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  87.18.Hf (Spatiotemporal pattern formation in cellular populations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11365003 and 11165004).
Corresponding Authors:  Deng Min-Yi     E-mail:  dengminyi@mailbox.gxnu.edu.cn

Cite this article: 

Deng Min-Yi (邓敏艺), Dai Jing-Yu (戴静娱), Zhang Xue-Liang (张学良) A cellular automaton model for the ventricular myocardium considering the layer structure 2015 Chin. Phys. B 24 090503

[1] Kohl P, Sachs F and Franz M R 2005 Cardiac Mechano-Electric Feedback & Arrhythmia (Tianjin: Tianjin Science & Technology Translation & Publishing Co.) p. 121 (in Chinese)
[2] Sidorov V Y, Aliev R R, Woods M C, Baudenbacher F, Baudenbacher P and Wikswo J P 2003 Phys. Rev. Lett. 91 208104
[3] Pourhasanzade F and Sabzpoushan S H 2010 The 3rd IEEE International Conference on Computer Science and Information Technology, July 9-11, 2010, Chengdu, China, p. 502
[4] Sorgente A and Josephson M E 2012 J. C. Cases 5 e28
[5] Zhu J J, Jiang S Q, Wang W Y, Zhao C, Wu Y H, Luo M and Quan W W 2014 Chin. Phys. B 23 048702
[6] Yan Q, Guan D L, Yang H and Yan H W 2012 A Concise Handbook of Electrocardiogram (Beijing: People's Medical Publishing House) (in Chinese)
[7] Chen J X, Mao J W, Hu B B, Xu J R, He Y F, Li Y and Yuan X P 2009 Phys. Rev. E 79 066209
[8] Ma J, Ying H P, Pan G W and Pu Z S 2005 Chin. Phys. Lett. 22 2176
[9] Dong L F, Bai Z G and He Y F 2012 Acta Phys. Sin. 61 120509 (in Chinese)
[10] Gan Z N and Cheng X M 2010 Chin. Phys. B 19 050514
[11] Wolfram S 1983 Rev. Mod. Phys. 55 601
[12] Makowiec D 2010 Int. J. Mod. Phys. C 21 107
[13] Moe G K, Rheinboldt W C, Werner and Abildskov J A 1964 Am. Heart J. 67 200
[14] Makowiec D 2010 Acta Phys. Pol. B: Proc. Suppl. 3 377
[15] Mitchell R H, Bailey A H and Anderson J 1992 IEEE T. Bio-Med .Eng. 39 253
[16] Zhu H, Sun Y, Yin B S and Zhu D M 2001 Acta Bioph. Sin. 17 123 (in Chinese)
[17] Zhu H, Sun Y, Rajagopal G, Mondry A and Dhar P 2004 BioMed. Eng. OnLine 3 29
[18] Drouin E, Charpentier F, Gauthier C, Laurent K and Marec H L 1995 J. Am. Coll. Cardiol. 26 185
[19] Antzelevitch C 2001 Cardiovasc. Res. 50 426
[20] Tinniswood A D, Furse C M and Gandhi O P 1998 Phys. Med. Biol. 43 2361
[21] Yu C G, Bai R, Chen D L and Huang Y 2008 Cardiac Electrophysiology- Foundation and Clinic (Wuhan: Huazhong University of Science & Technology Press) (in Chinese)
[22] Lu W G, Wang K Q, Zuo W M, Li J and Zhang H G 2011 J. Biomed. Eng. 28 1200 (in Chinese)
[23] Nasha M P and Panfilov A V 2004 Prog. Biophys. Mol. Bio. 85 501
[24] Gao X, Zhang H, Zykov V and Bodenschatz E 2014 New J. Phys. 16 033012
[1] Numerical simulation on dendritic growth of Al-Cu alloy under convection based on the cellular automaton lattice Boltzmann method
Kang-Wei Wang(王康伟), Meng-Wu Wu(吴孟武), Bing-Hui Tian(田冰辉), and Shou-Mei Xiong(熊守美). Chin. Phys. B, 2022, 31(9): 098105.
[2] Nonvanishing optimal noise in cellular automaton model of self-propelled particles
Guang-Le Du(杜光乐) and Fang-Fu Ye(叶方富). Chin. Phys. B, 2022, 31(8): 086401.
[3] Simulation of crowd dynamics in pedestrian evacuation concerning panic contagion: A cellular automaton approach
Guan-Ning Wang(王冠宁), Tao Chen(陈涛), Jin-Wei Chen(陈锦炜), Kaifeng Deng(邓凯丰), and Ru-Dong Wang(王汝栋). Chin. Phys. B, 2022, 31(6): 060402.
[4] Applying a global pulse disturbance to eliminate spiral waves in models of cardiac muscle
Jian Gao(高见), Changgui Gu(顾长贵), and Huijie Yang(杨会杰). Chin. Phys. B, 2021, 30(7): 070501.
[5] Unpinning the spiral waves by using parameter waves
Lu Peng(彭璐) and Jun Tang(唐军). Chin. Phys. B, 2021, 30(5): 058202.
[6] Simulation-based optimization of inner layout of a theater considering the effect of pedestrians
Qing-Fei Gao(高庆飞), Yi-Zhou Tao(陶亦舟), Yan-Fang Wei(韦艳芳), Cheng Wu(吴成), Li-Yun Dong(董力耘). Chin. Phys. B, 2020, 29(3): 034501.
[7] Analyzing floor-stair merging flow based on experiments and simulation
Yu Zhu(朱萸), Tao Chen(陈涛), Ning Ding(丁宁), Wei-Cheng Fan(范维澄). Chin. Phys. B, 2020, 29(1): 010401.
[8] A new cellular automaton model accounting for stochasticity in traffic flow induced by heterogeneity in driving behavior
Xiaoyong Ni(倪晓勇), Hong Huang(黄弘). Chin. Phys. B, 2019, 28(9): 098901.
[9] Urban rail departure capacity analysis based on a cellular automaton model
Wen-Jun Li(李文俊), Lei Nie(聂磊). Chin. Phys. B, 2018, 27(7): 070204.
[10] Cellular automaton modeling of pedestrian movement behavior on an escalator
Fu-Rong Yue(岳芙蓉), Juan Chen(陈娟), Jian Ma(马剑), Wei-Guo Song(宋卫国), Siu-Ming Lo(卢兆明). Chin. Phys. B, 2018, 27(12): 124501.
[11] Exploring the role of inhibitory coupling in duplex networks
Cui-Yun Yang(杨翠云), Guo-Ning Tang(唐国宁), Hai-Ying Liu(刘海英). Chin. Phys. B, 2017, 26(8): 088201.
[12] Self-organized phenomena of pedestrian counterflow through a wide bottleneck in a channel
Li-Yun Dong(董力耘), Dong-Kai Lan(蓝冬恺), Xiang Li(李翔). Chin. Phys. B, 2016, 25(9): 098901.
[13] Effects of abnormal excitation on the dynamics of spiral waves
Min-Yi Deng(邓敏艺), Xue-Liang Zhang(张学良), Jing-Yu Dai(戴静娱). Chin. Phys. B, 2016, 25(1): 010504.
[14] Effects of physical parameters on the cell-to-dendrite transition in directional solidification
Wei Lei (魏雷), Lin Xin (林鑫), Wang Meng (王猛), Huang Wei-Dong (黄卫东). Chin. Phys. B, 2015, 24(7): 078108.
[15] Colloidal monolayer self-assembly and its simulation via cellular automaton model
Wu Yi-Zhi (吴以治), Chen Chen (陈晨), Xu Xiao-Liang (许小亮), Liu Yun-Xi (刘赟夕), Shao Wei-Jia (邵伟佳), Yin Nai-Qiang (尹乃强), Zhang Wen-Ting (张文婷), Ke Jia-Xin (柯佳鑫), Fang Xiao-Tian (方啸天). Chin. Phys. B, 2014, 23(8): 088703.
No Suggested Reading articles found!