Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 078108    DOI: 10.1088/1674-1056/24/7/078108
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effects of physical parameters on the cell-to-dendrite transition in directional solidification

Wei Lei (魏雷), Lin Xin (林鑫), Wang Meng (王猛), Huang Wei-Dong (黄卫东)
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  A quantitative cellular automaton model is used to study the cell-to-dendrite transition (CDT) in directional solidification. We give a detailed description of the CDT by carefully examining the influence of the physical parameters, including: the Gibbs–Thomson coefficient Γ, the solute diffusivity Dl, the solute partition coefficient k0, and the liquidus slope ml. It is found that most of the parameters agree with the Kurz and Fisher (KF) criterion, except for k0. The intrinsic relations among the critical velocity Vcd, the cellular primary spacing λc, max, and the critical spacing λcd are investigated.
Keywords:  directional solidification      cell-to-dendrite transition      dendrite growth      cellular automaton  
Received:  31 October 2014      Revised:  27 January 2015      Accepted manuscript online: 
PACS:  81.30.-t (Phase diagrams and microstructures developed by solidification and solid-solid phase transformations)  
  68.70.+w (Whiskers and dendrites (growth, structure, and nonelectronic properties))  
  81.30.Fb (Solidification)  
  81.10.Aj (Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51271213 and 51323008), the National Basic Research Program of China (Grant No. 2011CB610402), the National High Technology Research and Development Program of China (Grant No. 2013AA031103), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20116102110016), and the China Postdoctoral Science Foundation (Grant No. 2013M540771).
Corresponding Authors:  Lin Xin     E-mail:  xlin@nwpu.edu.cn

Cite this article: 

Wei Lei (魏雷), Lin Xin (林鑫), Wang Meng (王猛), Huang Wei-Dong (黄卫东) Effects of physical parameters on the cell-to-dendrite transition in directional solidification 2015 Chin. Phys. B 24 078108

[1] Mullins W W and Sekerka R F 1964 J. Appl. Phys. 35 444
[2] Kurz W and Fisher D J 1981 Acta Metal. 29 11
[3] Trivedi R 1984 Metall. Trans. A 15 977
[4] Tewari S N and Laxmanan V 1987 Metall. Trans. A 18 167
[5] Karma A and Pelce P 1989 Europhys. Phys. Lett. 9 713
[6] Trivedi R and Kurz W 1994 Inter. Mater. Rev. 39 49
[7] Liu L X and Kirkaldy J S 1995 Acta Metall. Mater. 43 2891
[8] Georgelin M and Pocheau A 1998 Phys Rev. E 57 3189
[9] Trivedi R, Shen Y and Liu S 2003 Metall. Mater. Trans. A 34 395
[10] Teng J, Liu S and Trivedi R 2009 Acta Mater. 57 3497
[11] Huang W D, Geng X D and Zhou Y H 1993 J. Cryst. Growth 134 105
[12] Lin X, Huang W D, Feng J, Li T and Zhou Y H 1999 Acta Mater. 47 3271
[13] Lan C W, Shih C J and Lee M H 2005 Acta Mater. 53 2285
[14] Takakia T, Fukuokaa T and Tomita Y 2005 J. Crys. Growth 283 263
[15] Warren J A and Boettinger W J 1995 Acta Metall. Mater. 43 689
[16] Greenwood M, Haataja M and Provatas N 2004 Phys. Rev. Lett. 93 246101
[17] Karma A and Rappel W J 1998 Phys. Rev. E 57 4323
[18] Karma A 2001 Phys. Rev. Lett. 87 115701
[19] Kim S G, Kim W T and Suzuki T 1999 Phys. Rev. E 60 7186
[20] Plapp M and Dejmek M 2004 Europhys. Phys. Lett. 65 276
[21] Provatas N, Greenwood M, Athreya B, Goldenfeld N and Dantzig J 2005 Inter. J. Mod. Phys. B 19 4525
[22] Provatas N, Wang Q Y, Haataja M and Grant M 2003 Phys. Rev. Lett. 91 155502
[23] Gurevich S, Karma A, Plapp M and Trivedi R 2010 Phys. Rev. E 81 011603
[24] Echebarria B, Karma A and Gurevich S 2010 Phys. Rev. E 81 021608
[25] Xing H, Wang J Y, Chen C L, Jin K X and Du L F 2014 Chin. Phys. B 23 038104
[26] Wang Z J, Wang J C and Yang G C 2010 Chin. Phys. B 19 078101
[27] Hunt J D and Lu S Z 1996 Metal. Mater. Trans. A 27 611
[28] Sanchez L B and Stefanescu D M 2004 Metall. Mater. Trans. A 35 2471
[29] Zhu M F and Stefanescu D M 2007 Acta Mater. 55 1741
[30] Dong H B and Lee P D 2005 Acta Mater. 53 659
[31] Chen M W, Chen Y C, Zhang W L, Liu X M and Wang Z D 2014 Acta Phys. Sin. 63 038101 (in Chinese)
[32] Wei L, Lin X, Wang M and Huang W D 2012 Acta Phys. Sin. 61 098104 (in Chinese)
[33] Wei L, Lin X, Wang M and Huang W D 2011 Appl. Phys. A 103 123
[34] Wei L, Lin X, Wang M and Huang W D 2012 Com. Mater. Sci. 54 66
[35] Wei L, Lin X, Wang M and Huang W D 2012 Physica B 407 2471
[1] Numerical simulation on dendritic growth of Al-Cu alloy under convection based on the cellular automaton lattice Boltzmann method
Kang-Wei Wang(王康伟), Meng-Wu Wu(吴孟武), Bing-Hui Tian(田冰辉), and Shou-Mei Xiong(熊守美). Chin. Phys. B, 2022, 31(9): 098105.
[2] Nonvanishing optimal noise in cellular automaton model of self-propelled particles
Guang-Le Du(杜光乐) and Fang-Fu Ye(叶方富). Chin. Phys. B, 2022, 31(8): 086401.
[3] Simulation of crowd dynamics in pedestrian evacuation concerning panic contagion: A cellular automaton approach
Guan-Ning Wang(王冠宁), Tao Chen(陈涛), Jin-Wei Chen(陈锦炜), Kaifeng Deng(邓凯丰), and Ru-Dong Wang(王汝栋). Chin. Phys. B, 2022, 31(6): 060402.
[4] Multi-phase field simulation of competitive grain growth for directional solidification
Chang-Sheng Zhu(朱昶胜), Zi-Hao Gao(高梓豪), Peng Lei(雷鹏), Li Feng(冯力), and Bo-Rui Zhao(赵博睿). Chin. Phys. B, 2022, 31(6): 068102.
[5] Numerical study of growth competition between twin grains during directional solidification by using multi-phase field method
Chang-Sheng Zhu(朱昶胜), Ting Wang(汪婷), Li Feng(冯力), Peng Lei(雷鹏), and Fang-Lan Ma(马芳兰). Chin. Phys. B, 2022, 31(2): 028102.
[6] Simulation-based optimization of inner layout of a theater considering the effect of pedestrians
Qing-Fei Gao(高庆飞), Yi-Zhou Tao(陶亦舟), Yan-Fang Wei(韦艳芳), Cheng Wu(吴成), Li-Yun Dong(董力耘). Chin. Phys. B, 2020, 29(3): 034501.
[7] Analyzing floor-stair merging flow based on experiments and simulation
Yu Zhu(朱萸), Tao Chen(陈涛), Ning Ding(丁宁), Wei-Cheng Fan(范维澄). Chin. Phys. B, 2020, 29(1): 010401.
[8] A new cellular automaton model accounting for stochasticity in traffic flow induced by heterogeneity in driving behavior
Xiaoyong Ni(倪晓勇), Hong Huang(黄弘). Chin. Phys. B, 2019, 28(9): 098901.
[9] Urban rail departure capacity analysis based on a cellular automaton model
Wen-Jun Li(李文俊), Lei Nie(聂磊). Chin. Phys. B, 2018, 27(7): 070204.
[10] Cellular automaton modeling of pedestrian movement behavior on an escalator
Fu-Rong Yue(岳芙蓉), Juan Chen(陈娟), Jian Ma(马剑), Wei-Guo Song(宋卫国), Siu-Ming Lo(卢兆明). Chin. Phys. B, 2018, 27(12): 124501.
[11] Self-organized phenomena of pedestrian counterflow through a wide bottleneck in a channel
Li-Yun Dong(董力耘), Dong-Kai Lan(蓝冬恺), Xiang Li(李翔). Chin. Phys. B, 2016, 25(9): 098901.
[12] Effects of abnormal excitation on the dynamics of spiral waves
Min-Yi Deng(邓敏艺), Xue-Liang Zhang(张学良), Jing-Yu Dai(戴静娱). Chin. Phys. B, 2016, 25(1): 010504.
[13] A cellular automaton model for the ventricular myocardium considering the layer structure
Deng Min-Yi (邓敏艺), Dai Jing-Yu (戴静娱), Zhang Xue-Liang (张学良). Chin. Phys. B, 2015, 24(9): 090503.
[14] Tip-splitting instability in directional solidification based on bias field method
You Jia-Xue (游家学), Wang Zhi-Jun (王志军), Li Jun-Jie (李俊杰), Wang Jin-Cheng (王锦程). Chin. Phys. B, 2015, 24(7): 078107.
[15] Colloidal monolayer self-assembly and its simulation via cellular automaton model
Wu Yi-Zhi (吴以治), Chen Chen (陈晨), Xu Xiao-Liang (许小亮), Liu Yun-Xi (刘赟夕), Shao Wei-Jia (邵伟佳), Yin Nai-Qiang (尹乃强), Zhang Wen-Ting (张文婷), Ke Jia-Xin (柯佳鑫), Fang Xiao-Tian (方啸天). Chin. Phys. B, 2014, 23(8): 088703.
No Suggested Reading articles found!