Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 056801    DOI: 10.1088/1674-1056/adb8b5
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Modeling of microstructure and microsegregation evolution in solidification of ternary alloys

Qiannan Yu(于芊楠)1,2,3, Mengdan Hu(胡梦丹)1,2,3, Jinyi Wu(吴津仪)1,2,3, and Dongke Sun(孙东科)1,2,3,†
1 School of Mechanical Engineering, Southeast University, Nanjing 211189, China;
2 Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 211189, China;
3 Key Laboratory of Structure and Thermal Protection of High Speed Aircraft, Ministry of Education, School of Mechanical Engineering, Southeast University, Nanjing 211189, China
Abstract  The microstructure formed during solidification has a significant impact on the mechanical properties of materials. In this study, a two-dimensional (2D) cellular automaton (CA)-finite difference (FD)-CALPHAD model was developed to simulate the formation of microstructure and solute segregation in the solidification processes of ternary alloys. In the model, dendritic growth is simulated using the CA technique, while solute diffusion is solved by the FD method, and the CALPHAD method is employed to calculate thermodynamic phase equilibrium during solidification. The CA-FD-CALPHAD coupled model is capable of reproducing the evolution of continuous nucleation and growth of grains as well as the evolution of the microstructure and solute distribution during solidification of ternary alloys. In this study, Al-Zn-Mg ternary alloy is taken as an example to simulate the growth of equiaxed and columnar grains and the columnar-to-equiaxed transition (CET) under different solidification conditions. The simulation results are compared with experimental data from the literature, showing a good agreement. Besides, the study also investigates the evolution of temperature and multicomponent solute fields during solidification and the effects of alloy composition and cooling rate on the microstructure morphology. The results reveal that the initial alloy composition and cooling rate significantly affect dendritic morphology and solute segregation. Higher initial alloy concentrations promote the growth of side branches in equiaxed grains, leading to more pronounced solute segregation between dendrites. As the cooling rate increases, the average grain size of the equiaxed grains decreases accordingly. Additionally, a higher cooling rate accelerates the columnar-to-equiaxed transition, leading to a finer grain structure.
Keywords:  ternary alloys      solidification      dendrite      columnar-to-equiaxed transition      cellular automaton  
Received:  18 December 2024      Revised:  17 February 2025      Accepted manuscript online:  21 February 2025
PACS:  68.55.A- (Nucleation and growth)  
  68.08.De (Liquid-solid interface structure: measurements and simulations)  
  81.30.Fb (Solidification)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52301035), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20230844), and the National Key Research and Development Program of China (Grant No. 2023YFB3710202).
Corresponding Authors:  Dongke Sun     E-mail:  dksun@seu.edu.cn

Cite this article: 

Qiannan Yu(于芊楠), Mengdan Hu(胡梦丹), Jinyi Wu(吴津仪), and Dongke Sun(孙东科) Modeling of microstructure and microsegregation evolution in solidification of ternary alloys 2025 Chin. Phys. B 34 056801

[1] Hong C P and Zhu M F 2001 ISIJ Int. 41 43
[2] Paliwal M, Kang D H, Essadiqi E and Jung I 2014 Metall. Mater. Trans. A. Phys. Metall. Mater. Sci 45 3596
[3] Martorano M A and Biscuola V B 2009 Acta. Mater. 57 607
[4] Yan X, Chen S, Xie F and Chang Y A 2002 Acta Materialia 50 2199
[5] Zepon G, Ellendt N, Uhlenwinkel V and Bolfarini C 2016 Metall. Mater. Trans. A Phys. Metall Mater. Sci. 47 842
[6] Jia Y W, Huang H J, Fu Y A, Zhu G L, Shu D, Sun B D and StJohn D H 2019 Scr. Mater. 167 6
[7] Delaleau P, Beckermann C, Mathiesen R H and Arnberg L 2010 ISIJ Int. 50 1886
[8] Nguyen-Thi H, Reinhart G, Mangelinck-Noel N, Jung H, Billia B, Schenk T, Gastaldi J, Hartwig J and Baruchel J 2007 Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 38A 1458
[9] Nestler B and Wheeler A 2000 Physica D 138 114
[10] Zhang A, YangMH, Qin L, Cheng J, Tang Y C, Du J L, YuWB, Dong Z H, Liu F, Jiang B and Pan F S 2024 Comput. Math. Appl. 176 289
[11] Zhu C S, Wang T, Feng L, Lei P and Ma F L 2022 Chin. Phys. B 31 028102
[12] Mao S L, HuMD, ChenWand Sun D K 2024 Mater. Des. 246 113362
[13] Zhang A, Guo Z P, Jiang B, Du J L, Wang C H, Huang G S, Zhang D F, Liu F, Xiong S M and Pan F S 2021 Acta Mater. 214 117005
[14] Eshraghi M, Hashemi M, Jelinek B and Felicelli S D 2017 Metals 7 474
[15] An D, Chen S L, Sun D K Pan S Y, Krakauer B W and Zhu M F 2019 Comput. Mater. Sci. 166 210
[16] Zhang S J, Zhu B F, Li Y B, Zhang Y and Li R 2024 Comput. Mater. Sci. 245 113308
[17] Zhang Y J, Zhou J X, Yin Y J, Shen X and Ji X Y 2021 J. Mater. Res. Technol. 14 1862
[18] Tan Y X, Zhao H D and Xu Q Y 2024 Sci. China Mater. 67 1150
[19] Gu C, Ridgeway C D, Moodispaw, M P and Luo A A 2020 J. Mater. Process. Technol. 286 116829
[20] Liao S H, Webster S, Huang D, Council R, Ehmann K and Cao J 2022 Addit. Manuf. 56 102912
[21] Ramirez A J and Lippold J C 2004 Mater. Sci. Eng. A 380 245
[22] Cook P S and Murphy A B 2020 Addit. Manuf. 31 100909
[23] Chen H R, Liu X, Liu X C and Witherell P 2024 Addit. Manuf. 84 104095
[24] Sheng Y W, Zhou Z Q, Meng X N and Ru J S 2024 Can. Metall. Q 0 1
[25] Xiong F Y, Liang Y P, Panwisawas C, Chen J W, Li M J and Liu A W 2024 Addit. Manuf. 95 104517
[26] An Z, Pan J J, Hu X F and Yang H Y 2025 Int. J. Heat Mass Transfer 238 126452
[27] Chen S L, Daniel S, Zhang F Chang Y A, Yang X Y, Xie F Y, Schmid- Fetzer R and Oates W A 2002 Calphad 26 175
[28] CaoW, Chen S L, Zhang F,Wu K, Yang Y, Chang Y A, Schmid-Fetzer R and Oates W A 2009 Calphad 33 328
[29] Fang H, Tang Q Y, Zhang Q Y, Gu T F and Zhu M F 2019 Int. J. Heat Mass Transfer 133 371
[30] Pan S Y and Zhu M F 2010 Acta Mater. 58 340
[31] Boettinger W J, Warren J A, Beckermann C and Karma A 2002 Annu. Rev. Mater. Sci. 32 163
[32] Hu M D, Sun D K and Zhu M F 2024 Mater. Des. 241 112977
[33] Beltran-Sanchez L and Stefanescu D M 2004 Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 35 2471
[34] Liu T T, Mu Z Y, Hu R Z and Pang S Y 2019 Int. J. Heat Mass Transfer 140 346
[35] Tan C W, Dong Y, Sun H F, Liu F Y, Han X, Dong Q J, Chen B and Song X G 2023 J. Mater. Res. Technol. 26 6446
[36] Zhu M F, Kim J M and Hong C P 2001 ISIJ Int. 41 992
[37] Marsh S P and Glicksman M E 1996 Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 27 557
[38] Spinelli J E, Peres M D and Garcia A 2005 J. Alloys Compd. 403 228
[39] Zhu M F and Hong C P 2001 ISIJ Int. 41 436
[40] Wu M, Li J, Ludwig A and Kharicha A 2013 Comput. Mater. Sci. 79 830
[41] Wu M H, Ludwig A, Bührig-Polaczek A, Fehlbier M and Sahm P R 2003 Int. J. Heat Mass Transfer 46 2819
[42] Wang J L, Wang F M, Zhao Y Y, Zhang J M and Ren W 2009 Int. J. Miner. Metall. Mater. 16 640
[43] Xiong L D, Zhu G L, Mi G Y, Wang C M and Jiang P 2021 J. Alloys Compd. 858 157669
[44] Lu B, Li Y, Wang H Y, Wang Y, Yu W, Wang Z D and Xu G M 2023 J. Mater. Res. Technol. 22 2532
[1] Exploration of the coupled lattice Boltzmann model based on a multiphase field model: A study of the solid-liquid-gas interaction mechanism in the solidification process
Chang-Sheng Zhu(朱昶胜), Li-Jun Wang(王利军), Zi-Hao Gao(高梓豪), Shuo Liu(刘硕), and Guang-Zhao Li(李广召). Chin. Phys. B, 2024, 33(3): 038101.
[2] Dislocation mechanism of Ni47Co53 alloy during rapid solidification
Yun-Chun Liu(刘云春), Yong-Chao Liang(梁永超), Qian Chen(陈茜), Li Zhang(张利), Jia-Jun Ma(马家君), Bei Wang(王蓓), Ting-Hong Gao(高廷红), and Quan Xie(谢泉). Chin. Phys. B, 2023, 32(6): 066104.
[3] Parameter calculation and result storage for phase-field simulation in α-Mg dendrite growth of Mg-5-wt% Zn alloy
Wei-Peng Chen(陈伟鹏), Hua Hou(侯华), Yun-Tao Zhang(张云涛), Wei Liu(柳伟), and Yu-Hong Zhao(赵宇宏). Chin. Phys. B, 2023, 32(11): 118103.
[4] Amorphous transformation of ternary Cu45Zr45Ag10 alloy under microgravity condition
Ming-Hua Su(苏明华), Fu-Ping Dai(代富平), and Ying Ruan(阮莹). Chin. Phys. B, 2022, 31(9): 098106.
[5] Numerical simulation on dendritic growth of Al-Cu alloy under convection based on the cellular automaton lattice Boltzmann method
Kang-Wei Wang(王康伟), Meng-Wu Wu(吴孟武), Bing-Hui Tian(田冰辉), and Shou-Mei Xiong(熊守美). Chin. Phys. B, 2022, 31(9): 098105.
[6] Nonvanishing optimal noise in cellular automaton model of self-propelled particles
Guang-Le Du(杜光乐) and Fang-Fu Ye(叶方富). Chin. Phys. B, 2022, 31(8): 086401.
[7] Simulation of crowd dynamics in pedestrian evacuation concerning panic contagion: A cellular automaton approach
Guan-Ning Wang(王冠宁), Tao Chen(陈涛), Jin-Wei Chen(陈锦炜), Kaifeng Deng(邓凯丰), and Ru-Dong Wang(王汝栋). Chin. Phys. B, 2022, 31(6): 060402.
[8] Multi-phase field simulation of competitive grain growth for directional solidification
Chang-Sheng Zhu(朱昶胜), Zi-Hao Gao(高梓豪), Peng Lei(雷鹏), Li Feng(冯力), and Bo-Rui Zhao(赵博睿). Chin. Phys. B, 2022, 31(6): 068102.
[9] Phase-field modeling of faceted growth in solidification of alloys
Hui Xing(邢辉), Qi An(安琪), Xianglei Dong(董祥雷), and Yongsheng Han(韩永生). Chin. Phys. B, 2022, 31(4): 048104.
[10] Numerical study of growth competition between twin grains during directional solidification by using multi-phase field method
Chang-Sheng Zhu(朱昶胜), Ting Wang(汪婷), Li Feng(冯力), Peng Lei(雷鹏), and Fang-Lan Ma(马芳兰). Chin. Phys. B, 2022, 31(2): 028102.
[11] Effects of heat transfer in a growing particle layer on microstructural evolution during solidification of colloidal suspensions
Jia-Xue You(游家学), Yun-Han Zhang(张运涵), Zhi-Jun Wang(王志军), Jin-Cheng Wang(王锦程), and Sheng-Zhong Liu(刘生忠). Chin. Phys. B, 2021, 30(2): 028103.
[12] Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain
Chao Yang(杨超), Jing Wang(王静), Junsheng Wang(王俊升), Yu Liu(刘瑜), Guomin Han(韩国民), Haifeng Song(宋海峰), and Houbing Huang(黄厚兵). Chin. Phys. B, 2021, 30(1): 018201.
[13] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[14] Simulation-based optimization of inner layout of a theater considering the effect of pedestrians
Qing-Fei Gao(高庆飞), Yi-Zhou Tao(陶亦舟), Yan-Fang Wei(韦艳芳), Cheng Wu(吴成), Li-Yun Dong(董力耘). Chin. Phys. B, 2020, 29(3): 034501.
[15] Analyzing floor-stair merging flow based on experiments and simulation
Yu Zhu(朱萸), Tao Chen(陈涛), Ning Ding(丁宁), Wei-Cheng Fan(范维澄). Chin. Phys. B, 2020, 29(1): 010401.
No Suggested Reading articles found!