INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
|
|
|
A new cellular automaton model accounting for stochasticity in traffic flow induced by heterogeneity in driving behavior |
Xiaoyong Ni(倪晓勇)1,2, Hong Huang(黄弘)1,2 |
1 Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
2 Beijing Key Laboratory of City Integrated Emergency Response Science, Tsinghua University, Beijing 100084, Chinas |
|
|
Abstract A new reliable cellular automaon (CA) model designed to account for stochasticity in traffic flow induced by heterogeneity in driving behavior is presented. The proposed model differs from most existing CA models in that this new model focuses on describing traffic phenomena by coding into its rules the key idea that a vehicle's moving state is directly determined by a driver stepping on the accelerator or on the brake (the vehicle's acceleration). Acceleration obeys a deformed continuous distribution function when considering the heterogeneity in driving behavior and the safe distance, rather than equaling a fixed acceleration value with a probability, as is the rule in many existing CA models. Simulation results show that the new proposed model is capable of reproducing empirical findings in real traffic system. Moreover, this new model makes it possible to implement in-depth analysis of correlations between a vehicle's state parameters.
|
Received: 27 February 2019
Revised: 25 June 2019
Accepted manuscript online:
|
PACS:
|
89.40.-a
|
(Transportation)
|
|
45.70.Vn
|
(Granular models of complex systems; traffic flow)
|
|
07.05.Tp
|
(Computer modeling and simulation)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFC0809900) and the National Natural Science Foundation of China (Grant Nos. 71774093 and 71473146). |
Corresponding Authors:
Hong Huang
E-mail: hhong@tsinghua.edu.cn
|
Cite this article:
Xiaoyong Ni(倪晓勇), Hong Huang(黄弘) A new cellular automaton model accounting for stochasticity in traffic flow induced by heterogeneity in driving behavior 2019 Chin. Phys. B 28 098901
|
[39] |
Schadschneider A and Schreckenberg M 1997 Ann. Phys. (Berlin) 509 541
|
[1] |
Kerner B S and Konhäuser P 1994 Phys. Rev. E 50 54
|
[40] |
Knospe W, Santen L, Schadschneider A and Schreckenberg M 2000 J. Phys. A 33 L477
|
[2] |
Treiber M, Hennecke A and Helbing D 1999 Phys. Rev. E 59 239
|
[41] |
Tomoeda A, Miyaji T and Ikeda K 2018 Transportmetrica A 14 503
|
[3] |
Bando M, Hasebe K, Nakanishi K, Nakayama A, Shibata A and Sugiyama Y 1995 J. Phys. I (France) 5 1389
|
[42] |
Jiang R and Wu Q S 2003 J. Phys. A 36 381
|
[4] |
Nagel K and Schreckenberg M 1992 J. Phys. I (France) 2 2221
|
[43] |
Zhang Z Y, Rong J and Ren F T 2004 J. Highway Transport. Res. Dev. 8 108(in Chinese)
|
[5] |
Adriana S M, Mirian B O, Mauricio C and Chen C 2002 Int. J. Intell. Syst. 17 125
|
[44] |
Jin C J, Knoop V L, Jiang R, Wang W and Wang H 2018 IET Intell. Transp. Syst. 12 359
|
[6] |
Barceló J 2010 Fundamentals of Traffic Simulation (New York:Springer-Verlag)
|
[45] |
Jin C J, Wang W, Jiang R, Zhang H M, Wang H and Hu M B 2015 Transport. Res. C 60 324
|
[7] |
Liang J Y, Zhang L L, Luan X D, Guo J L, Lao S Y and Xie Y X 2017 Acta Phys. Sin. 66 194501(in Chinese)
|
[46] |
Jin C J, Wang W, Jiang R, Zhang H M and Wang H 2013 Phys. Rev. E 87 012815
|
[8] |
Krauss S, Wagner P and Gawron C 1997 Phys. Rev. E 55 5597
|
[47] |
Jin C J, Wang W, Jiang R and Wang H 2014 J. Phys. A:Math. Theor. 47 125104
|
[9] |
Barlovic R, Santen L, Schadschneider A and Schreckenberg M 1998 Eur. Phys. J. B 5 793
|
[10] |
Kerner B S 1998 Phys. Rev. Lett. 81 3797
|
[11] |
Kerner B S and Klenov S L 2003 Phys. Rev. E 68 036130
|
[12] |
He S, Guan W and Song L 2010 Physica A 389 825
|
[13] |
Xiang Z T, Li Y J, Chen Y F and Xiong L 2013 Physica A 392 5399
|
[14] |
Xue Y, Jia L S, Teng W Z and Lu W Z 2015 Commun. Nonlinear Sci. 22 285
|
[15] |
Jin C J, Wang W and Jiang R 2014 Chin. Phys. B 23 024501
|
[16] |
Tian J, Jiang R, Jia B, Gao Z and Ma S 2016 Transport. Res. B 93 338
|
[17] |
Jiang R and Wu Q S 2006 Physic A 364 493
|
[18] |
Spyropoulou I 2007 Transport. Res. C 15 175
|
[19] |
Meng Q and Weng Q J 2011 Transport. Res. C 19 1263
|
[20] |
Zhu H J, Wang D and Zhou J B 2014 Appl. Mech. Mater. 587-589 2213
|
[21] |
Khallouk A, Lakouari N, Echab H and Ez-Zahraouy H 2017 Int. J. Mod. Phys. C 28 1750093
|
[22] |
Regragui Y and Moussa N 2018 Chin. J. Phys. 56 1273
|
[23] |
Guzmán H A, Lárraga M E, Alvarez-Icaza L and Carvajal J 2018 Physica A 491 528
|
[24] |
Guzmán H A, Lárraga M E, Alvarez-Icaza L and Huerta F 2014 UKSim-AMSS 8 th European Modelling Symposium, October 21-23, 2014, Pisa, Italy, p. 126
|
[25] |
Hsu C C and Chiou Y C 2018 J. Adv. Transport. 8961454
|
[26] |
Maleck K 2018 J. Comput. Sci. 28 32
|
[27] |
Yang L H, Zhang X Q and Ji W C 2018 Ksce J. Civ. Eng. 22 5187
|
[28] |
Lárraga M E and Alvarez-Icaza L 2010 Physica A 389 5425
|
[29] |
Lee H K, Barlovic R, Schreckenberg M and Kim D 2004 Phys. Rev. Lett. 92 238702
|
[30] |
Wang Y and Chen Y Y 2015 Chin. Phys. B 24 038902
|
[31] |
Wei D L and Liu H C 2013 Transport. Res. B 47 1
|
[32] |
Huang X L, Sun Jie and Sun Jian 2018 Transport. Res. C 95 346
|
[33] |
Bareket Z, Fancher P S and Ervien R D 1998 Fostering Development, Evaluation, and Deployment of Forward Crash Avoidance Systems (FOCAS), Annual Research Report (University of Michigan, Transportation Research Institute ARRJ-15-95), Ann Arbor, MI
|
[34] |
Li X C, Luo X, He M C and Chen S W 2018 Physica A 509 536
|
[35] |
Chen J X, Li Z B, Jiang H, Zhu S L and Wang W 2017 Physica A 468 880
|
[36] |
Alvarez L and Horowitz R 1999 Vehicle Syst. Dyn. 32 23
|
[37] |
Benjamin S C, Johnson N F and Hui P M 1996 J. Phys. A 29 3119
|
[38] |
Mallikarjuna Ch and Ramachandra Rao K 2011 Transportmetrica A 7 321
|
[39] |
Schadschneider A and Schreckenberg M 1997 Ann. Phys. (Berlin) 509 541
|
[40] |
Knospe W, Santen L, Schadschneider A and Schreckenberg M 2000 J. Phys. A 33 L477
|
[41] |
Tomoeda A, Miyaji T and Ikeda K 2018 Transportmetrica A 14 503
|
[42] |
Jiang R and Wu Q S 2003 J. Phys. A 36 381
|
[43] |
Zhang Z Y, Rong J and Ren F T 2004 J. Highway Transport. Res. Dev. 8 108(in Chinese)
|
[44] |
Jin C J, Knoop V L, Jiang R, Wang W and Wang H 2018 IET Intell. Transp. Syst. 12 359
|
[45] |
Jin C J, Wang W, Jiang R, Zhang H M, Wang H and Hu M B 2015 Transport. Res. C 60 324
|
[46] |
Jin C J, Wang W, Jiang R, Zhang H M and Wang H 2013 Phys. Rev. E 87 012815
|
[47] |
Jin C J, Wang W, Jiang R and Wang H 2014 J. Phys. A:Math. Theor. 47 125104
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|