Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 098901    DOI: 10.1088/1674-1056/ab343b
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

A new cellular automaton model accounting for stochasticity in traffic flow induced by heterogeneity in driving behavior

Xiaoyong Ni(倪晓勇)1,2, Hong Huang(黄弘)1,2
1 Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
2 Beijing Key Laboratory of City Integrated Emergency Response Science, Tsinghua University, Beijing 100084, Chinas
Abstract  

A new reliable cellular automaon (CA) model designed to account for stochasticity in traffic flow induced by heterogeneity in driving behavior is presented. The proposed model differs from most existing CA models in that this new model focuses on describing traffic phenomena by coding into its rules the key idea that a vehicle's moving state is directly determined by a driver stepping on the accelerator or on the brake (the vehicle's acceleration). Acceleration obeys a deformed continuous distribution function when considering the heterogeneity in driving behavior and the safe distance, rather than equaling a fixed acceleration value with a probability, as is the rule in many existing CA models. Simulation results show that the new proposed model is capable of reproducing empirical findings in real traffic system. Moreover, this new model makes it possible to implement in-depth analysis of correlations between a vehicle's state parameters.

Keywords:  cellular automaton      numerical simulations      traffic models  
Received:  27 February 2019      Revised:  25 June 2019      Accepted manuscript online: 
PACS:  89.40.-a (Transportation)  
  45.70.Vn (Granular models of complex systems; traffic flow)  
  07.05.Tp (Computer modeling and simulation)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2018YFC0809900) and the National Natural Science Foundation of China (Grant Nos. 71774093 and 71473146).

Corresponding Authors:  Hong Huang     E-mail:  hhong@tsinghua.edu.cn

Cite this article: 

Xiaoyong Ni(倪晓勇), Hong Huang(黄弘) A new cellular automaton model accounting for stochasticity in traffic flow induced by heterogeneity in driving behavior 2019 Chin. Phys. B 28 098901

[39] Schadschneider A and Schreckenberg M 1997 Ann. Phys. (Berlin) 509 541
[1] Kerner B S and Konhäuser P 1994 Phys. Rev. E 50 54
[40] Knospe W, Santen L, Schadschneider A and Schreckenberg M 2000 J. Phys. A 33 L477
[2] Treiber M, Hennecke A and Helbing D 1999 Phys. Rev. E 59 239
[41] Tomoeda A, Miyaji T and Ikeda K 2018 Transportmetrica A 14 503
[3] Bando M, Hasebe K, Nakanishi K, Nakayama A, Shibata A and Sugiyama Y 1995 J. Phys. I (France) 5 1389
[42] Jiang R and Wu Q S 2003 J. Phys. A 36 381
[4] Nagel K and Schreckenberg M 1992 J. Phys. I (France) 2 2221
[43] Zhang Z Y, Rong J and Ren F T 2004 J. Highway Transport. Res. Dev. 8 108(in Chinese)
[5] Adriana S M, Mirian B O, Mauricio C and Chen C 2002 Int. J. Intell. Syst. 17 125
[44] Jin C J, Knoop V L, Jiang R, Wang W and Wang H 2018 IET Intell. Transp. Syst. 12 359
[6] Barceló J 2010 Fundamentals of Traffic Simulation (New York:Springer-Verlag)
[45] Jin C J, Wang W, Jiang R, Zhang H M, Wang H and Hu M B 2015 Transport. Res. C 60 324
[7] Liang J Y, Zhang L L, Luan X D, Guo J L, Lao S Y and Xie Y X 2017 Acta Phys. Sin. 66 194501(in Chinese)
[46] Jin C J, Wang W, Jiang R, Zhang H M and Wang H 2013 Phys. Rev. E 87 012815
[8] Krauss S, Wagner P and Gawron C 1997 Phys. Rev. E 55 5597
[47] Jin C J, Wang W, Jiang R and Wang H 2014 J. Phys. A:Math. Theor. 47 125104
[9] Barlovic R, Santen L, Schadschneider A and Schreckenberg M 1998 Eur. Phys. J. B 5 793
[10] Kerner B S 1998 Phys. Rev. Lett. 81 3797
[11] Kerner B S and Klenov S L 2003 Phys. Rev. E 68 036130
[12] He S, Guan W and Song L 2010 Physica A 389 825
[13] Xiang Z T, Li Y J, Chen Y F and Xiong L 2013 Physica A 392 5399
[14] Xue Y, Jia L S, Teng W Z and Lu W Z 2015 Commun. Nonlinear Sci. 22 285
[15] Jin C J, Wang W and Jiang R 2014 Chin. Phys. B 23 024501
[16] Tian J, Jiang R, Jia B, Gao Z and Ma S 2016 Transport. Res. B 93 338
[17] Jiang R and Wu Q S 2006 Physic A 364 493
[18] Spyropoulou I 2007 Transport. Res. C 15 175
[19] Meng Q and Weng Q J 2011 Transport. Res. C 19 1263
[20] Zhu H J, Wang D and Zhou J B 2014 Appl. Mech. Mater. 587-589 2213
[21] Khallouk A, Lakouari N, Echab H and Ez-Zahraouy H 2017 Int. J. Mod. Phys. C 28 1750093
[22] Regragui Y and Moussa N 2018 Chin. J. Phys. 56 1273
[23] Guzmán H A, Lárraga M E, Alvarez-Icaza L and Carvajal J 2018 Physica A 491 528
[24] Guzmán H A, Lárraga M E, Alvarez-Icaza L and Huerta F 2014 UKSim-AMSS 8 th European Modelling Symposium, October 21-23, 2014, Pisa, Italy, p. 126
[25] Hsu C C and Chiou Y C 2018 J. Adv. Transport. 8961454
[26] Maleck K 2018 J. Comput. Sci. 28 32
[27] Yang L H, Zhang X Q and Ji W C 2018 Ksce J. Civ. Eng. 22 5187
[28] Lárraga M E and Alvarez-Icaza L 2010 Physica A 389 5425
[29] Lee H K, Barlovic R, Schreckenberg M and Kim D 2004 Phys. Rev. Lett. 92 238702
[30] Wang Y and Chen Y Y 2015 Chin. Phys. B 24 038902
[31] Wei D L and Liu H C 2013 Transport. Res. B 47 1
[32] Huang X L, Sun Jie and Sun Jian 2018 Transport. Res. C 95 346
[33] Bareket Z, Fancher P S and Ervien R D 1998 Fostering Development, Evaluation, and Deployment of Forward Crash Avoidance Systems (FOCAS), Annual Research Report (University of Michigan, Transportation Research Institute ARRJ-15-95), Ann Arbor, MI
[34] Li X C, Luo X, He M C and Chen S W 2018 Physica A 509 536
[35] Chen J X, Li Z B, Jiang H, Zhu S L and Wang W 2017 Physica A 468 880
[36] Alvarez L and Horowitz R 1999 Vehicle Syst. Dyn. 32 23
[37] Benjamin S C, Johnson N F and Hui P M 1996 J. Phys. A 29 3119
[38] Mallikarjuna Ch and Ramachandra Rao K 2011 Transportmetrica A 7 321
[39] Schadschneider A and Schreckenberg M 1997 Ann. Phys. (Berlin) 509 541
[40] Knospe W, Santen L, Schadschneider A and Schreckenberg M 2000 J. Phys. A 33 L477
[41] Tomoeda A, Miyaji T and Ikeda K 2018 Transportmetrica A 14 503
[42] Jiang R and Wu Q S 2003 J. Phys. A 36 381
[43] Zhang Z Y, Rong J and Ren F T 2004 J. Highway Transport. Res. Dev. 8 108(in Chinese)
[44] Jin C J, Knoop V L, Jiang R, Wang W and Wang H 2018 IET Intell. Transp. Syst. 12 359
[45] Jin C J, Wang W, Jiang R, Zhang H M, Wang H and Hu M B 2015 Transport. Res. C 60 324
[46] Jin C J, Wang W, Jiang R, Zhang H M and Wang H 2013 Phys. Rev. E 87 012815
[47] Jin C J, Wang W, Jiang R and Wang H 2014 J. Phys. A:Math. Theor. 47 125104
[1] Numerical simulation on dendritic growth of Al-Cu alloy under convection based on the cellular automaton lattice Boltzmann method
Kang-Wei Wang(王康伟), Meng-Wu Wu(吴孟武), Bing-Hui Tian(田冰辉), and Shou-Mei Xiong(熊守美). Chin. Phys. B, 2022, 31(9): 098105.
[2] Nonvanishing optimal noise in cellular automaton model of self-propelled particles
Guang-Le Du(杜光乐) and Fang-Fu Ye(叶方富). Chin. Phys. B, 2022, 31(8): 086401.
[3] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[4] Simulation of crowd dynamics in pedestrian evacuation concerning panic contagion: A cellular automaton approach
Guan-Ning Wang(王冠宁), Tao Chen(陈涛), Jin-Wei Chen(陈锦炜), Kaifeng Deng(邓凯丰), and Ru-Dong Wang(王汝栋). Chin. Phys. B, 2022, 31(6): 060402.
[5] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[6] Simulation-based optimization of inner layout of a theater considering the effect of pedestrians
Qing-Fei Gao(高庆飞), Yi-Zhou Tao(陶亦舟), Yan-Fang Wei(韦艳芳), Cheng Wu(吴成), Li-Yun Dong(董力耘). Chin. Phys. B, 2020, 29(3): 034501.
[7] Analyzing floor-stair merging flow based on experiments and simulation
Yu Zhu(朱萸), Tao Chen(陈涛), Ning Ding(丁宁), Wei-Cheng Fan(范维澄). Chin. Phys. B, 2020, 29(1): 010401.
[8] Urban rail departure capacity analysis based on a cellular automaton model
Wen-Jun Li(李文俊), Lei Nie(聂磊). Chin. Phys. B, 2018, 27(7): 070204.
[9] Cellular automaton modeling of pedestrian movement behavior on an escalator
Fu-Rong Yue(岳芙蓉), Juan Chen(陈娟), Jian Ma(马剑), Wei-Guo Song(宋卫国), Siu-Ming Lo(卢兆明). Chin. Phys. B, 2018, 27(12): 124501.
[10] Self-organized phenomena of pedestrian counterflow through a wide bottleneck in a channel
Li-Yun Dong(董力耘), Dong-Kai Lan(蓝冬恺), Xiang Li(李翔). Chin. Phys. B, 2016, 25(9): 098901.
[11] Effects of abnormal excitation on the dynamics of spiral waves
Min-Yi Deng(邓敏艺), Xue-Liang Zhang(张学良), Jing-Yu Dai(戴静娱). Chin. Phys. B, 2016, 25(1): 010504.
[12] A cellular automaton model for the ventricular myocardium considering the layer structure
Deng Min-Yi (邓敏艺), Dai Jing-Yu (戴静娱), Zhang Xue-Liang (张学良). Chin. Phys. B, 2015, 24(9): 090503.
[13] Effects of physical parameters on the cell-to-dendrite transition in directional solidification
Wei Lei (魏雷), Lin Xin (林鑫), Wang Meng (王猛), Huang Wei-Dong (黄卫东). Chin. Phys. B, 2015, 24(7): 078108.
[14] Colloidal monolayer self-assembly and its simulation via cellular automaton model
Wu Yi-Zhi (吴以治), Chen Chen (陈晨), Xu Xiao-Liang (许小亮), Liu Yun-Xi (刘赟夕), Shao Wei-Jia (邵伟佳), Yin Nai-Qiang (尹乃强), Zhang Wen-Ting (张文婷), Ke Jia-Xin (柯佳鑫), Fang Xiao-Tian (方啸天). Chin. Phys. B, 2014, 23(8): 088703.
[15] On the modeling of synchronized flow in cellular automaton models
Jin Cheng-Jie (金诚杰), Wang Wei (王炜), Jiang Rui (姜锐). Chin. Phys. B, 2014, 23(2): 024501.
No Suggested Reading articles found!