|
Special Issue:
SPECIAL TOPIC — Advanced magnonics
|
| SPECIAL TOPIC — Advanced magnonics |
Prev
Next
|
|
|
Current-driven inertial domain wall dynamics in ferromagnet |
| Zai-Dong Li(李再东)† |
| Tianjin Key Laboratory of Quantum Optics and Intelligent Photonics, School of Science, Tianjin University of Technology, Tianjin 300384, China;School of Mathematics and Physics, Xinjiang Hetian College, Hetian 848000, China |
|
|
|
|
Abstract We investigate the inertial domain wall (DW) dynamics driven by spin-polarized current in ferromagnets. The exact solutions reveal an upper limit for DW velocity, given by $V\leq1/\sqrt{\alpha \tau}$. This indicates that damping and inertia become the key factors in achieving higher DW speeds. For the case of uniaxial anisotropy, we analyze the effects of inertia and current on DW dynamics. Due to inertia, the DW velocity, width, rotation frequency, and wave number are mutually coupled. When the DW width varies slightly, the velocity decreases rapidly while the magnetization precession frequency increases sharply with the inertia term. However, once the rotation frequency exceeds its maximum value, both the DW velocity and rotation frequency gradually decline. Regarding current-driven dynamics, we identify a critical current $j_{\rm 1c}$ that directly triggers the Walker breakdown. For currents below this threshold $j_{1}<j_{\rm 1c}$, the absolute DW velocity increases with current, whereas it decreases for $j_{1}>j_{\rm 1c}$. During this process, the DW velocity rapidly peaks under current drive, accompanied by the magnetization rotation frequency nearing its maximum and minimal variation in DW width. These results suggest that the DW behaves like a classical rigid body, reaching its maximum velocity as it approaches peak rotational speed. For biaxial anisotropy, we derive analytical solutions. The competition between hard-axis anisotropy and inertia causes the DW magnetization to lose its spiral structure and rotational symmetry. The inertia effect leads to a slow initial decrease followed by a rapid increase in DW width, whereas current modulation gradually widens the DW. The analytical solution also reveals another critical current, $j_{1\max}=\sqrt{\alpha/\tau}/\beta$, which scales with the square root of the inertia-to-damping ratio and is inversely proportional to the nonadiabatic spin-transfer torque parameter $\beta$.
|
Received: 21 June 2025
Revised: 10 August 2025
Accepted manuscript online: 15 August 2025
|
|
PACS:
|
75.78.-n
|
(Magnetization dynamics)
|
| |
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
| |
72.25.Rb
|
(Spin relaxation and scattering)
|
|
| Fund: This work was supported by the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, China (Grant No. KF202203) and the Tianjin Natural Science Foundation Project (Grant No. 25JCQNJC00990). |
Corresponding Authors:
Zai-Dong Li
E-mail: lizd@email.tjut.edu.cn
|
Cite this article:
Zai-Dong Li(李再东) Current-driven inertial domain wall dynamics in ferromagnet 2025 Chin. Phys. B 34 107513
|
[1] Ciornei M C, Rubi J M andWegrowe J E 2011 Phys. Rev. B 83 020410 [2] Fähnle M, Steiauf D and Illg C 2011 Phys. Rev. B 84 172403 [3] Wegrowe J E and Ciornei M C 2012 Am. J. Phys. 80 607 [4] Bhattacharjee S, Nordström L and Fransson J 2012 Phys. Rev. Lett. 108 057204 [5] Olive E, Lansac Y andWegrowe J E 2012 Appl. Phys. Lett. 100 192407 [6] Böttcher D and Henk J 2012 Phys. Rev. B 86 020404 [7] Kikuchi T and Tatara G 2015 Phys. Rev. B 92 184410 [8] Olive E, Lansac Y, Meyer M, Hayoun M and Wegrowe J E 2015 J. Appl. Phys. 117 213904 [9] Wegrowe J E and Olive E 2016 J. Phys. Condens. Matter 28 106001 [10] Thonig D, Eriksson O and Pereiro M 2017 Sci. Rep. 7 931 [11] Mondal R, Berritta M, Nandy A K and Oppeneer P M 2017 Phys. Rev. B 96 024425 [12] Mondal R, Berritta M and Oppeneer P M 2018 J. Phys. Condens. Matter 30 265801 [13] Li Y, Naletov V V, Klein O, Prieto J L, Muñoz M, Cros V, Bortolotti P, Anane A, Serpico C and de Loubens G 2019 Phys. Rev. X 9 041036 [14] Giordano S and Déjardin P M 2020 Phys. Rev. B 102 214406 [15] Titov S V, CoffeyWT, Kalmykov Y P and Zarifakis M 2021 Phys. Rev. B 103 214444 [16] Cherkasskii M, Farle M and Semisalova A 2020 Phys. Rev. B 102 184432 [17] Titov S V, CoffeyWT, Kalmykov Y P, ZarifakisMand Titov A S 2021 Phys. Rev. B 103 144433 [18] Neeraj K, Pancaldi M, Scalera V, Perna S, d’Aquino M, Serpico C and Bonetti S 2022 Phys. Rev. B 105 054415 [19] Neeraj K, Awari N, Kovalev S, et al. 2021 Nat. Phys. 17 245 [20] Unikandanunni V, Medapalli R, Asa M, Albisetti E, Petti D, Bertacco R, Fullerton E E and Bonetti S 2022 Phys. Rev. Lett. 129 237201 [21] Cherkasskii M, Barsukov I, Mondal R, FarleMand Semisalova A 2022 Phys. Rev. B 106 054428 [22] Titov S V, Dowling W J and Kalmykov Y P 2022 J. Appl. Phys. 131 193901 [23] Anders J, Sait C R J and Horsley S A R 2022 New J. Phys. 24 033020 [24] Cowburn R P, Allwood D A, Xiong G and Cooke M D 2002 J. Appl. Phys. 91 6949 [25] Ono T, Miyajima H, Shigeto K, Mibu K, Hosoito N and Shinjo T 1999 Science 284 468 [26] Berger L 1984 J. Appl. Phys. 55 1954 [27] Berger L 1992 J. Appl. Phys. 71 2721 [28] Grollier J, Boulenc P, Cros V, Hamzic A, Vaur‘es A, Fert A and Faini G 2003 Appl. Phys. Lett. 83 509 [29] Kläui M, Vaz C A F, Bland J A C, Wernsdorfer W, Faini G, Cambril E and Heyderman L J 2003 Appl. Phys. Lett. 83 105 [30] Vernier N, Allwood D A, Atkinson D, Cooke M D and Cowburn R P 2004 Europhys. Lett. 65 526 [31] Beach G S D, Knutson C, Nistor C, Tsoi M and Erskine J L 2006 Phys. Rev. Lett. 97 057203 [32] Hayashi M, Thomas L, Rettner C, Moriya R, Bazaliy Y B and Parkin S S P 2007 Phys. Rev. Lett. 98 037204 [33] Schryer N L and Walker L R 1974 J. Appl. Phys. 45 5406 [34] Li Z and Zhang S 2004 Phys. Rev. Lett. 92 207203 [35] Zhang S, Levy P M and Fert A 2002 Phys. Rev. Lett. 88 236601 [36] Allwood D A, Xiong G, Cooke M D, Faulkner C C, Atkinson D, Vernier N and Cowburn R P 2002 Science 296 2003 [37] Yamaguchi A, Ono T, Nasu S, Miyake K, Mibu K and Shinjo T 2004 Phys. Rev. Lett. 92 077205 [38] Tsoi M, Fontana R E and Parkin S S P 2003 Appl. Phys. Lett. 83 2617 [39] Mondal R, Rózsa L, Farle M, Oppeneer P M, Nowak U and Cherkasskii M 2023 J. Magn. Magn. Mater. 579 170830 [40] Winter L, Großenbach S, Nowak U and Rózsa L 2022 Phys. Rev. B 106 214403 [41] Makhfudz I, Hajati Y and Olive E 2022 Phys. Rev. B 106 134415 [42] De A, Lentfert A, Scheuer L, Stadtmüller B, Pirro P, Freymann G v and Aeschlimann M 2025 Phys. Rev. B 111 014432 [43] Rodriguez R, Cherkasskii M, Jiang R, Mondal R, Etesamirad A, Tossounian A, Ivanov B A and Barsukov I 2024 Phys. Rev. Lett. 132 246701 [44] Li Z D, Nan X M and Liu W M 2024 Phys. E 159 115931 [45] Sinova J, Valenzuela S O, Wunderlich J, Back C H and Jungwirth T 2015 Rev. Mod. Phys. 87 1213 [46] Taniguchi T, Grollier J and Stiles M D 2015 Phys. Rev. Appl. 3 044001 [47] Barsukov I, Fu Y, Safranski C, Chen Y J, Youngblood B, Gonçalves A M, Spasova M, Farle M, Katine J A, Kuo C C and Krivorotov I N 2015 Appl. Phys. Lett. 106 192407 [48] Hellman F, Hoffmann A, Tserkovnyak Y, Beach G S, Fullerton E E, Leighton C, MacDonald A H, Ralph D C, Arena D A, Dürr H A and Fischer P 2017 Rev. Mod. Phys. 89 025006 [49] Shao Q, Li P, Liu L, Yang H, Fukami S, Razavi A, Wu H, Wang K, Freimuth F,Mokrousov Y, StilesMD, Emori S, Hoffmann A, Akerman J, Roy K, Wang J P, Yang S H, Garello K and Zhang W 2021 IEEE Trans. Magn. 57 1 [50] Safranski C, Montoya E A and Krivorotov I N 2019 Nat. Nanotechnol. 14 27 [51] Montoya E A, Khan A, Safranski C, Smith A and Krivorotov I N 2023 Commun. Phys. 6 184 [52] Etesamirad A, Rodriguez R, Bocanegra J, Verba R, Katine J, Krivorotov I N, Tyberkevych V, Ivanov B and Barsukov I 2021 ACS Appl. Mater. Interfaces 13 20288 [53] Janda T, Roy P E, Otxoa R M, Šobáň Z, Ramsay A, Irvine A C, Trojanek F, Surýnek M, Campion R P, Gallagher B L, Němec P, Jungwirth T and Wunderlich J 2017 Nat. Commun. 8 15226 [54] Gareeva Z and Guslienko K 2023 Nanomaterials 13 461 [55] Tretiakov O A and Abanov Ar 2010 Phys. Rev. Lett. 105 157201 [56] Carva K, Battiato M, Legut D and Oppeneer P M 2013 Phys. Rev. B 87 184425 [57] Kim J W, Vomir M and Bigot J Y 2012 Phys. Rev. Lett. 109 166601 [58] Graves C E, Reid A H, Wang T, Wu B, Jong S De, Vahaplar K, Radu I, Bernstein D P, Messerschmidt M, Müller L and Coffee R 2013 Nat. Mater. 12 293 [59] Iacocca E, Liu T M, Reid A H, Fu Z, Ruta S, Granitzka P W, Jal E, Bonetti S, Gray A X, Graves C E and Kukreja R 2019 Nat. Commun. 10 1756 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|