Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 078501    DOI: 10.1088/1674-1056/27/7/078501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Dependence of single event upsets sensitivity of low energy proton on test factors in 65 nm SRAM

Yin-Yong Luo(罗尹虹), Feng-Qi Zhang(张凤祁), Xiao-Yu Pan(潘霄宇), Hong-Xia Guo(郭红霞), Yuan-Ming Wang(王圆明)
State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024, China
Abstract  

In order to accurately predict the single event upsets (SEU) rate of on-orbit proton, the influence of the proton energy distribution, incident angle, supply voltage, and test pattern on the height, width, and position of SEU peak of low energy protons (LEP) in 65 nm static random access memory (SRAM) are quantitatively evaluated and analyzed based on LEP testing data and Monte Carlo simulation. The results show that different initial proton energies used to degrade the beam energy will bring about the difference in the energy distribution of average proton energy at the surface and sensitive region of the device under test (DUT), which further leads to significant differences including the height of SEU peak and the threshold energy of SEU. Using the lowest initial proton energy is extremely important for SEU testing with low energy protons. The proton energy corresponding to the SEU peak shifts to higher average proton energies with the increase of the tilt angle, and the SEU peaks also increase significantly. The reduction of supply voltage lowers the critical charge of SEU, leading to the increase of LEP SEU cross section. For standard 6-transitor SRAM with bit-interleaving technology, SEU peak does not show clear dependence on three test patterns of logical checkerboard 55H, all “1”, and all “0”. It should be noted that all the SEUs in 65 nm SRAM are single cell upset in LEP testing due to proton's low linear energy transfer (LET) value.

Keywords:  low energy proton      energy distribution      tilt angle      supply voltage      test pattern  
Received:  02 April 2018      Revised:  02 May 2018      Accepted manuscript online: 
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  61.82.Fk (Semiconductors)  
  21.60.Ka (Monte Carlo models)  
Fund: 

Project supported by the Major Program of the National Natural Science Foundation of China (Grant Nos. 11690040 and 11690043).

Corresponding Authors:  Yin-Yong Luo     E-mail:  luoyinhong@nint.ac.cn

Cite this article: 

Yin-Yong Luo(罗尹虹), Feng-Qi Zhang(张凤祁), Xiao-Yu Pan(潘霄宇), Hong-Xia Guo(郭红霞), Yuan-Ming Wang(王圆明) Dependence of single event upsets sensitivity of low energy proton on test factors in 65 nm SRAM 2018 Chin. Phys. B 27 078501

[1] Rodbell K P, Heidel D F, Tang H H K, Gordon M S, Oldiges P and Murray C E 2007 IEEE Trans. Nucl. Sci. 54 2474
[2] Lawrence R K, Ross J F, Haddad N F, Reed R A and Albrecht D R 2009 Proc. IEEE Radiat. Eff. Data Workshop Rec., Jul 20-24, 2009, Quebec, Canada, p. 123
[3] Dodds N A, Martinez M J, Dodd P E, et al. 2015 IEEE Trans. Nucl. Sci. 62 2440
[4] Rodbell K P, Gordon M S, Stawiasz K G, Oldiges P, Lilja K and Turowski M 2017 IEEE Trans. Nucl. Sci. 64 999
[5] Heidel D F, Marshall P W, Pellish J A, Rodbell K P, LaBel K A, Schwank J R, Rauch S E, Hakey M C, Berg M D, Castaneda C M, Dodd P E, Friendlich M R, Phan A D, Seidleck C M, Shaneyfelt M R and Xapsos M A 2009 IEEE Trans. Nucl. Sci. 56 3499
[6] Seifert N, Gill B, Pellish J A, Marshall P W and LaBel K A 2011 IEEE Trans. Nucl. Sci. 58 2711
[7] Weulersse C, Miller F, Alexandrescu D, Schaefer E and Gaillard R 2011 Proc. Eur. Conf. Radiation and Its Effects on Components Systems, Sep 19-23, 2011, Sevilla, Spain, p. 291
[8] Pellish J A, Marshall Paul W, Rodbell K P, Gordon M S, LaBel K, Schwank J R, Dodds N A, Castaneda C M, Berg M D, Kim H S, Phan A M and Seidleck C M 2014 IEEE Trans. Nucl. Sci. 61 2896
[9] Cannon E H, Cabanas-Holmen M, Wert J, Amort T, Brees R, Koehn J, Meaker B and Normand E 2010 IEEE Trans. Nucl. Sci. 57 3493
[10] Dodds N A, Dodd P E, Shaneyfelt M R, Sexton F W, Martinez M J, Black J D, Marshall P W, Reed R A, McCurdy M W, Weller R A, Pellish J A, Rodbell K P and Gordon M S 2015 IEEE Trans. Nucl. Sci. 62 2822
[11] Ye B, Liu J, Wang T S, Liu T Q, Maaz K, Luo J, Wang B, Yin Y N, Ji Q G, Sun Y M and Hou M D 2017 Nucl. Instrum. Methods Phys. Res. Sect. B 406 443
[12] Sierawski B D, Pellish J A, Reed R A, Schrimpf R D, Warren K M, Weller R A, Mendenhall M H, Black J D, Tipton A D, Xapsos M A, Baumann R C, Xiaowei D, Campola M J, Friendlich M R, Kim H S, Phan A M and Seidleck C M 2009 IEEE Trans. Nucl. Sci. 56 3085
[13] Heidel D F, Marshall P W, LaBel K A, Schwank J R, Rodbell K P, Hakey M C, Berg M D, Dodd P E, Friendlich M R, Phan A D, Seidleck C M, Shaneyfelt M R and Xapsos M A 208 IEEE Trans. Nucl. Sci. 55 3394
[14] He A L, Guo G, Chen L, Shen D J, Ren Y, Liu J C, Zhang Z C, Cai L, Shi S T, Wang H, Fan H, Gao L J and Kong F Q 2014 At. Energy Sci. Technol. 48 2364 (in Chinese)
[15] Haddad N F, Kelly A T, Lawrence R K, Bin L, Rodgers J C, Ross J F, Warren K M, Weller R A, Mendenhall M H and Reed R A 2011 IEEE Trans. Nucl. Sci. 58 975
[16] Luo Y H, Zhang F Q, Wang Y P, Wang Y M, Guo X Q and Guo H X 2016 Acta Phys. Sin. 65 068501 (in Chinese)
[17] Bagatin M, Gerardin S, Paccagnella A, Visconti A, Virtanen A, Kettunen H, Costantino A, Ferlet-Cavrois V and Zadeh A 2017 IEEE Trans. Nucl. Sci. 64 464
[18] SRIM2013-The Stopping and Range of Ions in Matter.[Online]. Available:http://www.srim.org
[1] Influences of supply voltage on single event upsets and multiple-cell upsets in nanometer SRAM across a wide linear energy transfer range
Yin-Yong Luo(罗尹虹), Wei Chen(陈伟), Feng-Qi Zhang(张凤祁), and Tan Wang(王坦). Chin. Phys. B, 2021, 30(4): 048502.
[2] Phase shift effects of radio-frequency bias on ion energy distribution in continuous wave and pulse modulated inductively coupled plasmas
Chan Xue(薛婵), Fei Gao(高飞), Yong-Xin Liu(刘永新), Jia Liu(刘佳), You-Nian Wang(王友年). Chin. Phys. B, 2018, 27(4): 045202.
[3] Investigation on latch-up susceptibility induced by high-power microwave in complementary metal-oxide-semiconductor inverter
Yu-Hang Zhang(张宇航), Chang-Chun Chai(柴常春), Xin-Hai Yu(于新海), Yin-Tang Yang(杨银堂), Yang Liu(刘阳), Qing-Yang Fan(樊庆扬), Chun-Lei Shi(史春蕾). Chin. Phys. B, 2017, 26(2): 028501.
[4] One-dimensional hybrid simulation of the electrical asymmetry effectcaused by the fourth-order harmonic in dual-frequencycapacitively coupled plasma
Shuai Wang(王帅), Hai-Feng Long(龙海凤), Zhen-Hua Bi(毕振华), Wei Jiang(姜巍), Xiang Xu(徐翔), You-Nian Wang(王友年). Chin. Phys. B, 2016, 25(11): 115202.
[5] Energy distribution extraction of negative charges responsible for positive bias temperature instability
Ren Shang-Qing (任尚清), Yang Hong (杨红), Wang Wen-Wu (王文武), Tang Bo (唐波), Tang Zhao-Yun (唐兆云), Wang Xiao-Lei (王晓磊), Xu Hao (徐昊), Luo Wei-Chun (罗维春), Zhao Chao (赵超), Yan Jiang (闫江), Chen Da-Peng (陈大鹏), Ye Tian-Chun (叶甜春). Chin. Phys. B, 2015, 24(7): 077304.
[6] Short-pulse high-power microwave breakdown at high pressures
Zhao Peng-Cheng (赵朋程), Liao Cheng (廖成), Feng Ju (冯菊). Chin. Phys. B, 2015, 24(2): 025101.
[7] Influence of ultra-thin TiN thickness (1.4 nm and 2.4 nm) on positive bias temperature instability (PBTI) of high-k/metal gate nMOSFETs with gate-last process
Qi Lu-Wei (祁路伟), Yang Hong (杨红), Ren Shang-Qing (任尚清), Xu Ye-Feng (徐烨峰), Luo Wei-Chun (罗维春), Xu Hao (徐昊), Wang Yan-Rong (王艳蓉), Tang Bo (唐波), Wang Wen-Wu (王文武), Yan Jiang (闫江), Zhu Hui-Long (朱慧珑), Zhao Chao (赵超), Chen Da-Peng (陈大鹏), Ye Tian-Chun (叶甜春). Chin. Phys. B, 2015, 24(12): 127305.
[8] Validity of the two-term Boltzmann approximation employed in the fluid model for high-power microwave breakdown in gas
Zhao Peng-Cheng (赵朋程), Liao Cheng (廖成), Yang Dan (杨丹), Zhong Xuan-Ming (钟选明). Chin. Phys. B, 2014, 23(5): 055101.
[9] Analysis of electron energy distribution function in a magnetically filtered complex plasma
M K Deka, H Bailung, N C Adhikary. Chin. Phys. B, 2013, 22(4): 045201.
[10] Influence of varied doping structure on photoemissive property of photocathode
Niu Jun(牛军), Zhang Yi-Jun(张益军), Chang Ben-Kang(常本康), and Xiong Ya-Juan(熊雅娟) . Chin. Phys. B, 2011, 20(4): 044209.
[11] Energy and first law of thermodynamics for Born–Infeld–anti-de-Sitter black hole
Wei Yi-Huan(魏益焕). Chin. Phys. B, 2010, 19(9): 090404.
[12] Guided transmission of oxygen ions through Al2O3 nanocapillaries
Chen Yi-Feng(陈益峰), Chen Xi-Meng(陈熙萌), Lou Feng-Jun(娄凤君), Xu Jin-Zhang(徐进章), Shao Jian-Xiong(邵剑雄), Sun Guang-Zhi(孙光智), Wang Jun(王俊), Xi Fa-Yuan(席发元), Yin Yong-Zhi(尹永智), Wang Xing-An(王兴安), Xu Jun-Kui(徐俊奎), Cui Ying(崔莹), and Ding Bao-Wei(丁宝卫). Chin. Phys. B, 2009, 18(7): 2739-2743.
[13] Threshold and saturation properties of the field-induced twist cell with two parameters weak anchoring boundaries
Guan Rong-Hua (关荣华), Sun Yu-Bao (孙玉宝). Chin. Phys. B, 2006, 15(5): 1041-1050.
[14] Effects of atomic number Z on the energy distribution of hot electrons generated by femtosecond laser interaction with metallic targets
Cai Da-Feng(蔡达锋), Gu Yu-Qiu(谷渝秋), Zheng Zhi-Jian(郑志坚), Zhou Wei-Min(周维民), Jiao Chun-Ye(焦春晔), Chen Hao(陈豪), Wen Tian-Shu(温天舒), and Chunyu Shu-Tai(淳于书泰) . Chin. Phys. B, 2006, 15(10): 2363-2367.
[15] Molecular dynamic simulation of secondary ion emission from an Al sample bombarded with MeV heavy ions
Xue Jian-Ming (薛建明), N. Imanishi (今西信嗣). Chin. Phys. B, 2002, 11(3): 245-248.
No Suggested Reading articles found!