CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Energy distribution extraction of negative charges responsible for positive bias temperature instability |
Ren Shang-Qing (任尚清), Yang Hong (杨红), Wang Wen-Wu (王文武), Tang Bo (唐波), Tang Zhao-Yun (唐兆云), Wang Xiao-Lei (王晓磊), Xu Hao (徐昊), Luo Wei-Chun (罗维春), Zhao Chao (赵超), Yan Jiang (闫江), Chen Da-Peng (陈大鹏), Ye Tian-Chun (叶甜春) |
Institute of Microelectronics of Chinese Academy of Sciences, Key Laboratory of Microelectronics Devices and Integrated Technology, Beijing 100029, China |
|
|
Abstract A new method is proposed to extract the energy distribution of negative charges, which results from electron trapping by traps in the gate stack of nMOSFET during positive bias temperature instability (PBTI) stress based on the recovery measurement. In our case, the extracted energy distribution of negative charges shows an obvious dependence on energy, and the energy level of the largest energy density of negative charges is 0.01 eV above the conduction band of silicon. The charge energy distribution below that energy level shows strong dependence on the stress voltage.
|
Received: 09 December 2014
Revised: 17 March 2015
Accepted manuscript online:
|
PACS:
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
77.55.D-
|
|
|
85.30.Tv
|
(Field effect devices)
|
|
Fund: Project supported by the National Science & Technology Major Projects of the Ministry of Science and Technology of China (Grant No. 2009ZX02035) and the National Natural Science Foundation of China (Grant Nos. 61176091 and 61306129). |
Corresponding Authors:
Ren Shang-Qing, Wang Wen-Wu
E-mail: renshangqing@ime.ac.cn;wangwenwu@ime.ac.cn
|
Cite this article:
Ren Shang-Qing (任尚清), Yang Hong (杨红), Wang Wen-Wu (王文武), Tang Bo (唐波), Tang Zhao-Yun (唐兆云), Wang Xiao-Lei (王晓磊), Xu Hao (徐昊), Luo Wei-Chun (罗维春), Zhao Chao (赵超), Yan Jiang (闫江), Chen Da-Peng (陈大鹏), Ye Tian-Chun (叶甜春) Energy distribution extraction of negative charges responsible for positive bias temperature instability 2015 Chin. Phys. B 24 077304
|
[1] |
Pae S, Ashok A,Choi J, Ghani T, He J, Lee S H, Lemay K, Liu M, Lu R, Packan P, Parker C, Purser R, Amour A S and Woolery B 2010 48th Annual Proceedings: International Reliability Physics Symposium, May 2-6, 2010, Anaheim, USA, p. 287
|
[2] |
Pae S, Agostinelli M, Chau R, Dewey G, Ghani T, Hattendorf M, Hicks J, Kavalieros J, Kuhn K, Kuhn M, Maiz J, Metz M, Mistry K, Prasad C, Ramey S, Roskowski A, Standford J, Thomas C, Wiegand C and Wiedemer J 2008 46th Annual Proceedings: International Reliability Physics Symposium, April 27-May 1, 2008, Anaheim, USA, p. 352
|
[3] |
Robertson J 2004 Eur. Phys. J. Appl. Phys. 28 265
|
[4] |
Wilk G D, Wallace R M and Anthony J M 2001 J. Appl. Phys. 89 5243
|
[5] |
Zhang Y, Zhuo Q Q, Liu H X, Ma X H and Hao Y 2014 Chin. Phys. B 23 057304
|
[6] |
Lerous C, Mitard J, Ghibaudo G, Garros X, Reimbold G, Guillaumot B and Martin F 2004 IEDM Tech. Dig. p. 737
|
[7] |
Young C D, Bersuker G, Brown G A, Lim C, Lysaght P, Zeitzoff P, Murto R W and Huff H R 2003 Int. Integrated Reliability Workshop Final Report p. 28
|
[8] |
Pantisano L, Cartier E, Kerber A, Degraeve R, Lorenzini M, Rosmeulen M, Groeseneken G and Maes H E 2003 VLSI Tech. Dig. p 163
|
[9] |
Ribes G, Muller M, Bruyere S, Roy D, Denais M, Huard V, Skotnicki T and Ghibaudo G 2004 Proc. European Solid-State Device Research Conference p. 89
|
[10] |
Garros X, Brunet L, Rafic M, Coignus J, Reimbold G, Vincent E, Bravaix A and Boulanger F 2010 IEDM Tech. Dig. p. 90
|
[11] |
Lee S K, Jo M, Sohn C W, Kang C Y, Lee J C, Jeong Y H and Lee B H 2012 IEEE Electron Device Lett. 33 1517
|
[12] |
Cho M, Aoulaiche M, Degraeve R, Kaczer B, Franco J, Kauerauf T, Roussel P, Ragnarsson L A, Tseng J, Hoffmann T Y and Groeseneken G 2010 48th Annual Proceedings: International Reliability Physics Symposium p. 1095
|
[13] |
Zhang J F and Eccleston W 1998 IEEE Trans. Electron Devices 45 116
|
[14] |
Hauser J R and Ahmed K 1998 Proc. Int. Conf. Characterizat. Metrol. ULSI Technol. p. 235
|
[15] |
Tan C H, Xu M Z and Wang Y Y 1994 IEEE Electron Device Lett. 15 257
|
[16] |
Ren S Q, Yang H, Tang B, Xu H, Luo W C, Tang Z Y, Xu Y F, Xu J, Wang D H, Li J F, Yan J, Zhao C, Chen D P, Ye T C and Wang W W 2015 Journal of Semiconductors 36 014007
|
[17] |
Zhang J F 2009 Microelectronic Eng. 86 1883
|
[18] |
Degrave R, Aoulaiche M, Kazer B, Roussel P, Kauerauf T, Sahhaf S and Groesenken 2008 15th International Symposium on the Physical and Failure Analysis of Integrated Circuits p. 1
|
[19] |
Kerber A and Cartier N G 2009 Trans. Device Material Reliability 9 147
|
[20] |
Sayan S, Garfunkel E and Suzer S 2002 Appl. Phys. Lett. 80 2135
|
[21] |
Robertson J 2000 J. Vac. Sci. Technol. B 18 1785
|
[22] |
Foster A S, Gejo F L, Shluger A L and Niminen R M 2002 Phys. Rev. B 65 174117
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|