Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 090503    DOI: 10.1088/1674-1056/ae001b
GENERAL Prev   Next  

Dynamical behaviors of a multifunctional neural circuit

Xiao-Hong Gao(高晓红)1,†, Kai-Long Zhu(朱凯龙)2, and Fei-Fei Yang(杨飞飞)2
1 College of New Energy, Longdong University, Qingyang 745000, China;
2 College of Artificial Intelligence and Computer Science, Xi'an University of Science and Technology, Xi'an 710054, China
Abstract  Biological neurons exhibit a double-membrane structure and perform specialized functions. Replicating the double-membrane architecture in artificial neurons to mimic biological neuronal functions is a compelling research challenge. In this study, we propose a multifunctional neural circuit composed of two capacitors, two linear resistors, a phototube cell, a nonlinear resistor, and a memristor. The phototube and charge-controlled memristor serve as sensors for external light and electric field signals, respectively. By applying Kirchhoff's and Helmholtz's laws, we derive the system's nonlinear dynamical equations and energy function. We further investigate the circuit's dynamics using methods from nonlinear dynamics. Our results show that the circuit can exhibit both periodic and chaotic patterns under stimulation by external light and electric fields.
Keywords:  multifunctional neural circuit      energy distribution      dynamical behaviors  
Received:  19 July 2025      Revised:  27 August 2025      Accepted manuscript online:  28 August 2025
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the Gansu Provincial Department of Education University Teacher Innovation Fund Project (Grant No. 2024A-168), the Qingyang Science and Technology Plan Project (Grant No. QY-STK-2024B-193), and the Horizontal Research Project of Longdong University (Grant No. HXZK2422).
Corresponding Authors:  Xiao-Hong Gao     E-mail:  gaoxh0219@126.com

Cite this article: 

Xiao-Hong Gao(高晓红), Kai-Long Zhu(朱凯龙), and Fei-Fei Yang(杨飞飞) Dynamical behaviors of a multifunctional neural circuit 2025 Chin. Phys. B 34 090503

[1] Levi T, Khoyratee F, Saïghi S and Ikeuchi Y 2018 Artif. Life Robot. 23 10
[2] Hayati M, Nouri M and Haghiri S 2015 IEEE Trans. Circuits Syst. I 62 1805
[3] Brette R and Gerstner W 2005 J. Neurophysiol. 94 3637
[4] Hindmarsh J L and Rose R M 1982 Nature 296 162
[5] Chay T R 1985 Physica D 16 233
[6] Izhikevich E M 2003 IEEE Trans. Neural Netw. 14 1569
[7] Muni S S, Fatoyinbo H O and Ghosh I 2022 Int. J. Bifurcation Chaos 32 2230020
[8] Liu Y, XuW, Ma J, Alzahrani F and Hobiny A 2020 Front. Inf. Technol. Electron. Eng. 21 1387
[9] Xu Y, Guo Y, Ren G and Ma J 2020 Appl. Math. Comput. 385 125427
[10] Guo Y, Zhou P, Yao Z and Ma J 2021 Nonlinear Dyn. 105 3603
[11] Song X and Yang F 2024 Phys. Scr. 99 125247
[12] Yang F, Guo Q, Ren G and Ma J 2024 J. Biol. Phys. 50 271
[13] Xu Y, Liu M, Zhu Z and Ma J 2020 Chin. Phys. B 29 098704
[14] Xie Y, Ye Z, Li X, Wang X and Jia Y 2024 Cogn. Neurodyn. 18 1989
[15] Yang F, Han Z, Ren G, Guo Q and Ma J 2024 Eur. Phys. J. Plus 139 534
[16] Wu F, Hu X and Ma J 2022 Appl. Math. Comput. 432 127366
[17] Yang F, Xu Y and Ma J 2023 Chaos 33 023110
[18] Yang F, Ren G and Tang J 2023 Nonlinear Dyn. 111 21917
[19] Song X and Yang F 2025 J. Theor. Biol. 599 112034
[20] Guo Y, Wu F, Yang F and Ma J 2023 Chaos 33 113106
[21] Yang F, Song X and Yu Z 2024 Chaos Solitons Fractals 188 115496
[22] Wan J, Wu F, Ma J and Wang W 2024 Chin. Phys. B 33 050504
[23] Yang F, Song X and Yu Z 2025 Nonlinear Dyn. 113 7213
[24] Yu Z, Zhu K, Wang Y and Yang F 2025 Chaos Solitons Fractals 194 116233
[25] Yang F, Song X and Xu Y 2025 Chaos Solitons Fractals 199 116740
[26] Mao Y, Dong Y, Lu Z, Xiang C, Wang J and Liang Y 2025 Chaos Solitons Fractals 195 116279
[27] Xu Q, Wang Y, Iu H H C, Wang N and Bao H 2023 IEEE Trans. Circuits Syst. I 70 3130
[28] Lin H, Wang C, Sun Y and Yao W 2020 Nonlinear Dyn. 100 3667
[29] Park H, Han J K, Yim S, Shin D H, Park T W, Woo K S, Lee S H, Cho J M, Kim H W, Park T and Hwang C S 2025 Adv. Mater. 37 2412549
[30] Chen Y, Lai Q, Zhang Y, Erkan U and Toktas A 2024 Nonlinear Dyn. 112 8603
[31] Zhou L, Lin H and Tan F 2024 Neurocomputing 577 127384
[32] Bao B, Hu J, Cai J, Zhang X and Bao H 2023 Nonlinear Dyn. 111 3765
[33] Liu B, Peng X and Li C 2024 AEU-Int. J. Electron. Commun. 178 155283
[34] Ma T, Mou J and Chen W 2025 Chaos Solitons Fractals 198 116537
[35] Cao H, Wang Y, Banerjee S, Cao Y and Mou J 2024 Chaos Solitons Fractals 179 114466
[36] Ramakrishnan B, Mehrabbeik M, Parastesh F, Rajagopal K and Jafari S 2022 Electronics 11 153
[1] Experimental studies of H2/Ar plasma in a cylindrical inductive discharge with an expansion region
Shi-Bo Li(李世博), Si-Yu Xing(邢思雨), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2024, 33(10): 105201.
[2] Dynamical behaviors of traveling wave solutions to a Fujimoto-Watanabe equation
Zhen-Shu Wen(温振庶), Li-Juan Shi(师利娟). Chin. Phys. B, 2018, 27(9): 090201.
[3] Dependence of single event upsets sensitivity of low energy proton on test factors in 65 nm SRAM
Yin-Yong Luo(罗尹虹), Feng-Qi Zhang(张凤祁), Xiao-Yu Pan(潘霄宇), Hong-Xia Guo(郭红霞), Yuan-Ming Wang(王圆明). Chin. Phys. B, 2018, 27(7): 078501.
[4] Phase shift effects of radio-frequency bias on ion energy distribution in continuous wave and pulse modulated inductively coupled plasmas
Chan Xue(薛婵), Fei Gao(高飞), Yong-Xin Liu(刘永新), Jia Liu(刘佳), You-Nian Wang(王友年). Chin. Phys. B, 2018, 27(4): 045202.
[5] One-dimensional hybrid simulation of the electrical asymmetry effectcaused by the fourth-order harmonic in dual-frequencycapacitively coupled plasma
Shuai Wang(王帅), Hai-Feng Long(龙海凤), Zhen-Hua Bi(毕振华), Wei Jiang(姜巍), Xiang Xu(徐翔), You-Nian Wang(王友年). Chin. Phys. B, 2016, 25(11): 115202.
[6] Energy distribution extraction of negative charges responsible for positive bias temperature instability
Ren Shang-Qing (任尚清), Yang Hong (杨红), Wang Wen-Wu (王文武), Tang Bo (唐波), Tang Zhao-Yun (唐兆云), Wang Xiao-Lei (王晓磊), Xu Hao (徐昊), Luo Wei-Chun (罗维春), Zhao Chao (赵超), Yan Jiang (闫江), Chen Da-Peng (陈大鹏), Ye Tian-Chun (叶甜春). Chin. Phys. B, 2015, 24(7): 077304.
[7] Short-pulse high-power microwave breakdown at high pressures
Zhao Peng-Cheng (赵朋程), Liao Cheng (廖成), Feng Ju (冯菊). Chin. Phys. B, 2015, 24(2): 025101.
[8] Influence of ultra-thin TiN thickness (1.4 nm and 2.4 nm) on positive bias temperature instability (PBTI) of high-k/metal gate nMOSFETs with gate-last process
Qi Lu-Wei (祁路伟), Yang Hong (杨红), Ren Shang-Qing (任尚清), Xu Ye-Feng (徐烨峰), Luo Wei-Chun (罗维春), Xu Hao (徐昊), Wang Yan-Rong (王艳蓉), Tang Bo (唐波), Wang Wen-Wu (王文武), Yan Jiang (闫江), Zhu Hui-Long (朱慧珑), Zhao Chao (赵超), Chen Da-Peng (陈大鹏), Ye Tian-Chun (叶甜春). Chin. Phys. B, 2015, 24(12): 127305.
[9] Validity of the two-term Boltzmann approximation employed in the fluid model for high-power microwave breakdown in gas
Zhao Peng-Cheng (赵朋程), Liao Cheng (廖成), Yang Dan (杨丹), Zhong Xuan-Ming (钟选明). Chin. Phys. B, 2014, 23(5): 055101.
[10] Analysis of electron energy distribution function in a magnetically filtered complex plasma
M K Deka, H Bailung, N C Adhikary. Chin. Phys. B, 2013, 22(4): 045201.
[11] Influence of varied doping structure on photoemissive property of photocathode
Niu Jun(牛军), Zhang Yi-Jun(张益军), Chang Ben-Kang(常本康), and Xiong Ya-Juan(熊雅娟) . Chin. Phys. B, 2011, 20(4): 044209.
[12] Energy and first law of thermodynamics for Born–Infeld–anti-de-Sitter black hole
Wei Yi-Huan(魏益焕). Chin. Phys. B, 2010, 19(9): 090404.
[13] A novel four-dimensional autonomous hyperchaotic system
Liu Chong-Xin(刘崇新) and Liu Ling(刘凌). Chin. Phys. B, 2009, 18(6): 2188-2193.
[14] Effects of atomic number Z on the energy distribution of hot electrons generated by femtosecond laser interaction with metallic targets
Cai Da-Feng(蔡达锋), Gu Yu-Qiu(谷渝秋), Zheng Zhi-Jian(郑志坚), Zhou Wei-Min(周维民), Jiao Chun-Ye(焦春晔), Chen Hao(陈豪), Wen Tian-Shu(温天舒), and Chunyu Shu-Tai(淳于书泰) . Chin. Phys. B, 2006, 15(10): 2363-2367.
[15] Molecular dynamic simulation of secondary ion emission from an Al sample bombarded with MeV heavy ions
Xue Jian-Ming (薛建明), N. Imanishi (今西信嗣). Chin. Phys. B, 2002, 11(3): 245-248.
No Suggested Reading articles found!