|
Special Issue:
SPECIAL TOPIC — Structures and properties of materials under high pressure
|
| SPECIAL TOPIC — Structures and properties of materials under high pressure |
Prev
Next
|
|
|
Anionic electron dimensionality and monolayer ferromagnetism in Y-Co electrides |
| Lu Zheng(郑璐)1, Zimeng Lv(吕梓萌)1, Xiaochen Huang(黄小琛)1, Zhuangfei Zhang(张壮飞)1, Chao Fang(房超)1, Yuewen Zhang(张跃文)1, Qianqian Wang(王倩倩)1, Liangchao Chen(陈良超)1, Xiaopeng Jia(贾晓鹏)2, Biao Wan(万彪)1,†, and Huiyang Gou(缑慧阳)3 |
1 Key Laboratory of Material Physics of Ministry of Education, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450052, China; 2 State Key Laboratory of High Pressure and Superhard Materials, Jilin University, Changchun 130012, China; 3 Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China |
|
|
|
|
Abstract Electrides, characterized by spatially confined anionic electrons, have emerged as a promising class of materials for catalysis, magnetism, and superconductivity. However, transition-metal-based electrides with diverse electron dimensionalities remain largely unexplored. Here, we perform a comprehensive first-principles investigation of Y-Co electrides, focusing on Y$_{3}$Co, Y$_{3}$Co$_{2}$, and YCo. Our calculations reveal a striking dimensional evolution of anionic electrons: from two-dimensional (2D) confinement in YCo to one-dimensional (1D) in Y$_{3}$Co$_{2}$ and zero-dimensional (0D) in Y$_{3}$Co. Remarkably, the YCo monolayer exhibits intrinsic ferromagnetism, with a magnetic moment of 0.65 $\mu_{\rm B}$ per formula unit arising from spin-polarized anionic electrons mediating long-range coupling between Y and Co ions. The monolayer also shows a low exfoliation energy (1.66 J/m$^{2}$), indicating experimental feasibility. All three electrides exhibit low work functions (2.76 eV-3.11 eV) along with Co-centered anionic states. This work expands the family of transition-metal-based electrides and highlights dimensionality engineering as a powerful strategy for tuning electronic and magnetic properties.
|
Received: 07 July 2025
Revised: 01 August 2025
Accepted manuscript online: 06 August 2025
|
|
PACS:
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
| |
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
| |
62.50.-p
|
(High-pressure effects in solids and liquids)
|
| |
31.15.A-
|
(Ab initio calculations)
|
|
| Fund: The authors acknowledge funding support from the National Science Fund for Distinguished Young Scholars (Grant No. T2225027), the National Natural Science Foundation of China (Grant Nos. 12074013 and 12204419), and the China Postdoctoral Science Foundation (Grant No. 2021M702956). |
Corresponding Authors:
Yuanzheng Li
E-mail: biaowan@zzu.edu.cn
|
Cite this article:
Lu Zheng(郑璐), Zimeng Lv(吕梓萌), Xiaochen Huang(黄小琛), Zhuangfei Zhang(张壮飞), Chao Fang(房超), Yuewen Zhang(张跃文), Qianqian Wang(王倩倩), Liangchao Chen(陈良超), Xiaopeng Jia(贾晓鹏), Biao Wan(万彪), and Huiyang Gou(缑慧阳) Anionic electron dimensionality and monolayer ferromagnetism in Y-Co electrides 2025 Chin. Phys. B 34 097105
|
[1] Yang W, Zhang Y, Qiao G, Lai Y, Liu S, Wang C, Han J, Du H, Zhang Y, Yang Y, Hou Y and Yang J 2018 Acta Mater. 145 331 [2] Ma Z, Yue M, Liu H, Yin Z,Wei K, Guan H, Lin H, Shen M, An S,Wu Q and Sun S 2020 J. Am. Chem. Soc. 142 8440 [3] Pandey S K, Srivastava A and Srivastava O N 2007 Int. J. Hydrog. Energy 32 2461 [4] Zhang X, Meng W, Liu Y, Dai X, Liu G and Kou L 2023 J. Am. Chem. Soc. 145 5523 [5] Ye T N, Lu Y, Xiao Z, Li J, Nakao T, Abe H, Niwa Y, Kitano M, Tada T and Hosono H 2019 Nat. Commun. 10 5653 [6] Hosono H and Kitano M 2021 Chem. Rev. 121 3121 [7] Guan X, Huo B and Chen G 2024 Chin. Phys. B 33 060311 [8] Liang Y, Lin X, Wan B, Guo Z, Cao X, Shao D, Sun J and Gou H 2024 Phys. Rev. Res. 6 023249 [9] Wan B, Zhang J, Wu L and Gou H 2019 Chin. Phys. B 28 106201 [10] Yang Q, Jiang X and Zhao J 2023 Chin. Phys. Lett. 40 107401 [11] Dye J L 2009 Acc. Chem. Res. 42 1564 [12] Dye J L 1990 Science 247 663 [13] Liu Y, Cui T and Li D 2025 Matter and Radiation at Extremes 10 027802 [14] Lee K, Kim S W, Toda Y, Matsuishi S and Hosono H 2013 Nature 494 336 [15] Wang Q, Liu K, Xue X, Zhang L, Pang R, Ren X, Zhao X and Li S 2024 Phys. Rev. B 109 085420 [16] Matsuishi S, Toda Y, Miyakawa M, Hayashi K, Kamiya T, Hirano M, Tanaka I and Hosono H 2003 Science 301 626 [17] Hosono H, Kim J, Toda Y, Kamiya T and Watanabe S 2017 Proc. Natl. Acad. Sci. USA 114 233 [18] Xu Y, Zheng L, Zhang Y, Zhang Z,Wang Q, Zhang Y, Chen L, Fang C, Wan B and Gou H 2024 Matter and Radiation at Extremes 9 037402 [19] Wan B, Yuan Y, Zheng L, Xu Y, Zhao S, Liu K, Huang D,Wu L, Zhang Z, Wang G, Li J, Zhang S and Gou H 2024 J. Am. Chem. Soc. 146 17508 [20] Ogawa T, Kobayashi Y, Mizoguchi H, Kitano M, Abe H, Tada T, Toda Y, Niwa Y and Hosono H 2018 J. Phys. Chem. C 122 10468 [21] Gong Y, Wu J, Kitano M, Wang J, Ye T N, Li J, Kobayashi Y, Kishida K, Abe H, Niwa Y, Yang H, Tada T and Hosono H 2018 Nat. Catal. 1 178 [22] Ye T N, Lu Y, Li J, Nakao T, Yang H, Tada T, Kitano M and Hosono H 2017 J. Am. Chem. Soc. 139 17089 [23] Zhang Y, Wang B, Xiao Z, Lu Y, Kamiya T, Uwatoko Y, Kageyama H and Hosono H 2017 npj Quantum Mater. 2 45 [24] Zhang X, Yao Y, Ding S, Bergara A, Li F, Liu Y, Zhou X F and Yang G 2023 Phys. Rev. B 107 L100501 [25] Liang Y, Lin X, Wan B, Jia Y, Qian Y, Shao D and Gou H 2025 npj Comput. Mater. 11 220 [26] Ma J, Li Z, Tian H, Yang B, Yuan Y, Li R and Yu R 2024 Adv. Funct. Mater. 34 2316715 [27] Rosner H, Koudela D, Schwarz U, Handstein A, Hanfland M, Opahle I, Koepernik K, Kuz’min M D, Müller K H, Mydosh J A and Richter M 2006 Nat. Phys. 2 469 [28] Bochenek Ł, Rogacki K, Kołodziejczyk A and Cichorek T 2015 Phys. Rev. B 91 235314 [29] Levy O, Hart G L W and Curtarolo S 2010 Phys. Rev. B 81 174106 [30] Moreau J M, Parthé E and Paccard D 1975 Acta Crystallogr. Sect. B 31 747 [31] Podlesnyak A, Ehlers G, Cao H, Matsuda M, Frontzek M, Zaharko O, Kazantsev V A, Gubkin A F and Baranov N V 2013 Phys. Rev. B 88 024117 [32] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251 [33] Blöchl P E 1994 Phys. Rev. B 50 17953 [34] Feng Y, Chen Y, Wang L, Wang J, Chang D, Yuan Y, Wu M, Fu R, Zhang L,Wang Q,Wang K, Guo H andWang L 2024 Chin. Phys. Lett. 41 063201 [35] Klimeš J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131 [36] Togo A and Tanaka I 2015 Scr. Mater. 108 1 [37] Jung J H, Park C H and Ihm J 2018 Nano Lett. 18 2759 [38] Han W, Wang Z, Guan S, Wei J, Jiang Y, Zeng L, Shen L, Yang D and Wang H 2024 Appl. Phys. Rev. 11 021314 [39] Wan B, Lu Y, Xiao Z, Muraba Y, Kim J, Huang D,Wu L, Gou H, Zhang J and Gao F 2018 npj Comput. Mater. 4 77 [40] Zhang X, Xiao Z, Lei H, Toda Y, Matsuishi S, Kamiya T, Ueda S and Hosono H 2014 Chem. Mater. 26 6638 [41] Lu Y, Li J, Tada T, Toda Y, Ueda S, Yokoyama T, KitanoMand Hosono H 2016 J. Am. Chem. Soc. 138 3970 [42] Zhu Q, Frolov T and Choudhary K 2019 Matter 5 1293 [43] Lu Y, Wang J, Li J, Wu J, Kanno S, Tada T and Hosono H 2018 Phys. Rev. B 98 125128 [44] Meng W, Tian L, Zhou F, Mo Z, Jiao Y, Wang S, Jiang J, Zhang X, Cheng Z, Liu Y, Wang W, Zhang G and Wang X 2025 Adv. Mater. 37 2418904 [45] Wang J, Sui X, Gao S, Duan W, Liu F and Huang B 2019 Phys. Rev. Lett. 123 206402 [46] McRae L M, Radomsky R C, Pawlik J T, Druffel D L, Sundberg J D, Lanetti M G, Donley C L, White K L and Warren S C 2022 J. Am. Chem. Soc. 144 10862 [47] Huang X, Duan L, Zhang Z, Fang C, Chen L, Wang Q, Zhang Y, Shen W, Jia X, Wu L and Wan B 2022 J. Phys. Chem. C 126 20710 [48] Yang J, Wu B, Zhao S, Liu S, Lu J, Li S and Yang J 2024 Phys. Rev. Appl. 22 014017 [49] Zhang S, Guo F, Gao X, Yang M, Huang X, Zhang D, Li X, Zhang Y, Shang Y and Cao A 2024 Adv. Sci. 11 2405880 [50] Song N, Wang Y, Xu G, Pan J, Yuan Z and Wang F 2024 J. Magn. Magn. Mater. 599 172108 [51] Wu D, Mo Z, Li X, Ren X, Shi Z, Li X, Zhang L, Yu X, Peng H, Zeng L and Shan C X 2024 Appl. Phys. Rev. 11 041401 [52] Druffel D L, Woomer A H, Kuntz K L, Pawlik J T and Warren S C 2017 J. Mater. Chem. C 5 11196 [53] Hwang J Y, Lee S Y, Lee K, Regmi B, Lee N, Lim D C, Koo H, LeeW, Kim S G, Kim S W and Lee K H 2025 Adv. Mater. 37 2412956 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|