Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 097105    DOI: 10.1088/1674-1056/adf82f
Special Issue: SPECIAL TOPIC — Structures and properties of materials under high pressure
SPECIAL TOPIC — Structures and properties of materials under high pressure Prev   Next  

Anionic electron dimensionality and monolayer ferromagnetism in Y-Co electrides

Lu Zheng(郑璐)1, Zimeng Lv(吕梓萌)1, Xiaochen Huang(黄小琛)1, Zhuangfei Zhang(张壮飞)1, Chao Fang(房超)1, Yuewen Zhang(张跃文)1, Qianqian Wang(王倩倩)1, Liangchao Chen(陈良超)1, Xiaopeng Jia(贾晓鹏)2, Biao Wan(万彪)1,†, and Huiyang Gou(缑慧阳)3
1 Key Laboratory of Material Physics of Ministry of Education, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450052, China;
2 State Key Laboratory of High Pressure and Superhard Materials, Jilin University, Changchun 130012, China;
3 Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China
Abstract  Electrides, characterized by spatially confined anionic electrons, have emerged as a promising class of materials for catalysis, magnetism, and superconductivity. However, transition-metal-based electrides with diverse electron dimensionalities remain largely unexplored. Here, we perform a comprehensive first-principles investigation of Y-Co electrides, focusing on Y$_{3}$Co, Y$_{3}$Co$_{2}$, and YCo. Our calculations reveal a striking dimensional evolution of anionic electrons: from two-dimensional (2D) confinement in YCo to one-dimensional (1D) in Y$_{3}$Co$_{2}$ and zero-dimensional (0D) in Y$_{3}$Co. Remarkably, the YCo monolayer exhibits intrinsic ferromagnetism, with a magnetic moment of 0.65 $\mu_{\rm B}$ per formula unit arising from spin-polarized anionic electrons mediating long-range coupling between Y and Co ions. The monolayer also shows a low exfoliation energy (1.66 J/m$^{2}$), indicating experimental feasibility. All three electrides exhibit low work functions (2.76 eV-3.11 eV) along with Co-centered anionic states. This work expands the family of transition-metal-based electrides and highlights dimensionality engineering as a powerful strategy for tuning electronic and magnetic properties.
Keywords:  electrides      cobalt anions      work function      magnestism  
Received:  07 July 2025      Revised:  01 August 2025      Accepted manuscript online:  06 August 2025
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  62.50.-p (High-pressure effects in solids and liquids)  
  31.15.A- (Ab initio calculations)  
Fund: The authors acknowledge funding support from the National Science Fund for Distinguished Young Scholars (Grant No. T2225027), the National Natural Science Foundation of China (Grant Nos. 12074013 and 12204419), and the China Postdoctoral Science Foundation (Grant No. 2021M702956).
Corresponding Authors:  Yuanzheng Li     E-mail:  biaowan@zzu.edu.cn

Cite this article: 

Lu Zheng(郑璐), Zimeng Lv(吕梓萌), Xiaochen Huang(黄小琛), Zhuangfei Zhang(张壮飞), Chao Fang(房超), Yuewen Zhang(张跃文), Qianqian Wang(王倩倩), Liangchao Chen(陈良超), Xiaopeng Jia(贾晓鹏), Biao Wan(万彪), and Huiyang Gou(缑慧阳) Anionic electron dimensionality and monolayer ferromagnetism in Y-Co electrides 2025 Chin. Phys. B 34 097105

[1] Yang W, Zhang Y, Qiao G, Lai Y, Liu S, Wang C, Han J, Du H, Zhang Y, Yang Y, Hou Y and Yang J 2018 Acta Mater. 145 331
[2] Ma Z, Yue M, Liu H, Yin Z,Wei K, Guan H, Lin H, Shen M, An S,Wu Q and Sun S 2020 J. Am. Chem. Soc. 142 8440
[3] Pandey S K, Srivastava A and Srivastava O N 2007 Int. J. Hydrog. Energy 32 2461
[4] Zhang X, Meng W, Liu Y, Dai X, Liu G and Kou L 2023 J. Am. Chem. Soc. 145 5523
[5] Ye T N, Lu Y, Xiao Z, Li J, Nakao T, Abe H, Niwa Y, Kitano M, Tada T and Hosono H 2019 Nat. Commun. 10 5653
[6] Hosono H and Kitano M 2021 Chem. Rev. 121 3121
[7] Guan X, Huo B and Chen G 2024 Chin. Phys. B 33 060311
[8] Liang Y, Lin X, Wan B, Guo Z, Cao X, Shao D, Sun J and Gou H 2024 Phys. Rev. Res. 6 023249
[9] Wan B, Zhang J, Wu L and Gou H 2019 Chin. Phys. B 28 106201
[10] Yang Q, Jiang X and Zhao J 2023 Chin. Phys. Lett. 40 107401
[11] Dye J L 2009 Acc. Chem. Res. 42 1564
[12] Dye J L 1990 Science 247 663
[13] Liu Y, Cui T and Li D 2025 Matter and Radiation at Extremes 10 027802
[14] Lee K, Kim S W, Toda Y, Matsuishi S and Hosono H 2013 Nature 494 336
[15] Wang Q, Liu K, Xue X, Zhang L, Pang R, Ren X, Zhao X and Li S 2024 Phys. Rev. B 109 085420
[16] Matsuishi S, Toda Y, Miyakawa M, Hayashi K, Kamiya T, Hirano M, Tanaka I and Hosono H 2003 Science 301 626
[17] Hosono H, Kim J, Toda Y, Kamiya T and Watanabe S 2017 Proc. Natl. Acad. Sci. USA 114 233
[18] Xu Y, Zheng L, Zhang Y, Zhang Z,Wang Q, Zhang Y, Chen L, Fang C, Wan B and Gou H 2024 Matter and Radiation at Extremes 9 037402
[19] Wan B, Yuan Y, Zheng L, Xu Y, Zhao S, Liu K, Huang D,Wu L, Zhang Z, Wang G, Li J, Zhang S and Gou H 2024 J. Am. Chem. Soc. 146 17508
[20] Ogawa T, Kobayashi Y, Mizoguchi H, Kitano M, Abe H, Tada T, Toda Y, Niwa Y and Hosono H 2018 J. Phys. Chem. C 122 10468
[21] Gong Y, Wu J, Kitano M, Wang J, Ye T N, Li J, Kobayashi Y, Kishida K, Abe H, Niwa Y, Yang H, Tada T and Hosono H 2018 Nat. Catal. 1 178
[22] Ye T N, Lu Y, Li J, Nakao T, Yang H, Tada T, Kitano M and Hosono H 2017 J. Am. Chem. Soc. 139 17089
[23] Zhang Y, Wang B, Xiao Z, Lu Y, Kamiya T, Uwatoko Y, Kageyama H and Hosono H 2017 npj Quantum Mater. 2 45
[24] Zhang X, Yao Y, Ding S, Bergara A, Li F, Liu Y, Zhou X F and Yang G 2023 Phys. Rev. B 107 L100501
[25] Liang Y, Lin X, Wan B, Jia Y, Qian Y, Shao D and Gou H 2025 npj Comput. Mater. 11 220
[26] Ma J, Li Z, Tian H, Yang B, Yuan Y, Li R and Yu R 2024 Adv. Funct. Mater. 34 2316715
[27] Rosner H, Koudela D, Schwarz U, Handstein A, Hanfland M, Opahle I, Koepernik K, Kuz’min M D, Müller K H, Mydosh J A and Richter M 2006 Nat. Phys. 2 469
[28] Bochenek Ł, Rogacki K, Kołodziejczyk A and Cichorek T 2015 Phys. Rev. B 91 235314
[29] Levy O, Hart G L W and Curtarolo S 2010 Phys. Rev. B 81 174106
[30] Moreau J M, Parthé E and Paccard D 1975 Acta Crystallogr. Sect. B 31 747
[31] Podlesnyak A, Ehlers G, Cao H, Matsuda M, Frontzek M, Zaharko O, Kazantsev V A, Gubkin A F and Baranov N V 2013 Phys. Rev. B 88 024117
[32] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[33] Blöchl P E 1994 Phys. Rev. B 50 17953
[34] Feng Y, Chen Y, Wang L, Wang J, Chang D, Yuan Y, Wu M, Fu R, Zhang L,Wang Q,Wang K, Guo H andWang L 2024 Chin. Phys. Lett. 41 063201
[35] Klimeš J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131
[36] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[37] Jung J H, Park C H and Ihm J 2018 Nano Lett. 18 2759
[38] Han W, Wang Z, Guan S, Wei J, Jiang Y, Zeng L, Shen L, Yang D and Wang H 2024 Appl. Phys. Rev. 11 021314
[39] Wan B, Lu Y, Xiao Z, Muraba Y, Kim J, Huang D,Wu L, Gou H, Zhang J and Gao F 2018 npj Comput. Mater. 4 77
[40] Zhang X, Xiao Z, Lei H, Toda Y, Matsuishi S, Kamiya T, Ueda S and Hosono H 2014 Chem. Mater. 26 6638
[41] Lu Y, Li J, Tada T, Toda Y, Ueda S, Yokoyama T, KitanoMand Hosono H 2016 J. Am. Chem. Soc. 138 3970
[42] Zhu Q, Frolov T and Choudhary K 2019 Matter 5 1293
[43] Lu Y, Wang J, Li J, Wu J, Kanno S, Tada T and Hosono H 2018 Phys. Rev. B 98 125128
[44] Meng W, Tian L, Zhou F, Mo Z, Jiao Y, Wang S, Jiang J, Zhang X, Cheng Z, Liu Y, Wang W, Zhang G and Wang X 2025 Adv. Mater. 37 2418904
[45] Wang J, Sui X, Gao S, Duan W, Liu F and Huang B 2019 Phys. Rev. Lett. 123 206402
[46] McRae L M, Radomsky R C, Pawlik J T, Druffel D L, Sundberg J D, Lanetti M G, Donley C L, White K L and Warren S C 2022 J. Am. Chem. Soc. 144 10862
[47] Huang X, Duan L, Zhang Z, Fang C, Chen L, Wang Q, Zhang Y, Shen W, Jia X, Wu L and Wan B 2022 J. Phys. Chem. C 126 20710
[48] Yang J, Wu B, Zhao S, Liu S, Lu J, Li S and Yang J 2024 Phys. Rev. Appl. 22 014017
[49] Zhang S, Guo F, Gao X, Yang M, Huang X, Zhang D, Li X, Zhang Y, Shang Y and Cao A 2024 Adv. Sci. 11 2405880
[50] Song N, Wang Y, Xu G, Pan J, Yuan Z and Wang F 2024 J. Magn. Magn. Mater. 599 172108
[51] Wu D, Mo Z, Li X, Ren X, Shi Z, Li X, Zhang L, Yu X, Peng H, Zeng L and Shan C X 2024 Appl. Phys. Rev. 11 041401
[52] Druffel D L, Woomer A H, Kuntz K L, Pawlik J T and Warren S C 2017 J. Mater. Chem. C 5 11196
[53] Hwang J Y, Lee S Y, Lee K, Regmi B, Lee N, Lim D C, Koo H, LeeW, Kim S G, Kim S W and Lee K H 2025 Adv. Mater. 37 2412956
[1] Spatial electron tunneling leads to space-charge-limited current in organic hole transport materials
Shaofeng Chen(陈绍枫), Yanfei Lu(鲁燕飞), Dongcheng Chen(陈东成), and Shi-Jian Su(苏仕健). Chin. Phys. B, 2025, 34(7): 078101.
[2] Electron emission induced by keV protons from tungsten surface at different temperatures
Li-Xia Zeng(曾利霞), Xian-Ming Zhou(周贤明), Rui Cheng(程锐), Yu Liu(柳钰), Xiao-An Zhang(张小安), and Zhong-Feng Xu(徐忠锋). Chin. Phys. B, 2022, 31(7): 073202.
[3] Investigation of electronic, elastic, and optical properties of topological electride Ca3Pb via first-principles calculations
Chang Sun(孙畅), Xin-Yu Cao(曹新宇), Xi-Hui Wang(王西惠), Xiao-Le Qiu(邱潇乐), Zheng-Hui Fang(方铮辉), Yu-Jie Yuan(袁宇杰), Kai Liu(刘凯), and Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(5): 057104.
[4] High-pressure electrides: From design to synthesis
Biao Wan(万彪), Jingwu Zhang(张静武), Lailei Wu(吴来磊), Huiyang Gou(缑慧阳). Chin. Phys. B, 2019, 28(10): 106201.
[5] Performance of n-type silicon/silver composite anode material in lithium ion batteries: A study on effect of work function matching degree
Guo-Jun Xu(徐国军), Chen-Xin Jin(金晨鑫), Kai-Jie Kong(孔凯捷), Xi-Xi Yang(杨西西), Zhi-Hao Yue(岳之浩), Xiao-Min Li(李晓敏), Fu-Gen Sun(孙福根), Hai-Bin Huang(黄海宾), Lang Zhou(周浪). Chin. Phys. B, 2018, 27(10): 108201.
[6] Fermi level pinning effects at gate-dielectric interfaces influenced by interface state densities
Hong Wen-Ting (洪文婷), Han Wei-Hua (韩伟华), Lyu Qi-Feng (吕奇峰), Wang Hao (王昊), Yang Fu-Hua (杨富华). Chin. Phys. B, 2015, 24(10): 107306.
[7] Effect of Gd doping on the magnetism and work function of Fe1-xGdx/Fe (001)
Tang Ke-Qin (汤可嵚), Zhong Ke-Hua (钟克华), Cheng Yan-Ming (程燕铭), Huang Zhi-Gao (黄志高). Chin. Phys. B, 2014, 23(5): 056301.
[8] Increased work function in PEDOT:PSS film under ultraviolet irradiation
Xing Ying-Jie (邢英杰), Qian Min-Fang (钱旻昉), Guo Deng-Zhu (郭等柱), Zhang Geng-Min (张耿民). Chin. Phys. B, 2014, 23(3): 038504.
[9] Comparative study of adsorption characteristics of Cs on the GaN (0001) and GaN (0001) surfaces
Du Yu-Jie(杜玉杰), Chang Ben-Kang(常本康), Wang Hong-Gang(王洪刚), Zhang Jun-Ju(张俊举), and Wang Mei-Shan(王美山) . Chin. Phys. B, 2012, 21(6): 067103.
[10] A two-dimensional threshold voltage analytical model for metal-gate/high-k/SiO2/Si stacked MOSFETs
Ma Fei (马飞), Liu Hong-Xia (刘红侠), Fan Ji-Bin (樊继斌), Wang Shu-Long (王树龙). Chin. Phys. B, 2012, 21(10): 107306.
[11] Electron emission degradation of nano-structured sp2-bonded amorphous carbon films
Lu Zhan-Ling(鲁占灵), Wang Chang-Qing(王昶清), Jia Yu(贾瑜), Zhang Bing-Lin(张兵临), and Yao Ning(姚宁). Chin. Phys. B, 2007, 16(3): 843-847.
[12] Electronic structure of Yb/H-Si (111) interface
Li Hong-Nian (李宏年), Wang Xiao-Xiong (王晓雄), He Shao-Long (何少龙), Zhang Han-Jie (张寒杰), Li Hai-Yang (李海洋), Bao Shi-Ning (鲍世宁). Chin. Phys. B, 2004, 13(11): 1941-1946.
No Suggested Reading articles found!