| CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Physical properties of high-pressure synthesized Al65Cu20Fe15 quasicrystal |
| Yibo Liu(刘一博)1, Changzeng Fan(范长增)1,2,†, Zhefeng Xu(许哲峰)1, Ruidong Fu(付瑞东)1, Feng Ke(柯峰)1, Lin Wang(王霖)1, Bin Wen(温斌)1, Lifeng Zhang(张立峰)1,3, Marek Mihalkovič4, and Bo Xu(徐波)1 |
1 State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China; 2 Hebei Key Laboratory for Optimizing Metal Product Technology and Performance, Yanshan University, Qinhuangdao 066004, China; 3 School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China; 4 Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia |
|
|
|
|
Abstract Al$_{65}$Cu$_{20}$Fe$_{15}$ bulk is synthesized with the high-pressure synthesis (HPS) method. Various analytical techniques, such as single crystal x-ray diffraction (SXRD), scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy, and transmission electron microscopy, are employed to characterize the sintered bulk and confirmed its quasicrystalline structure. The electrical resistivity of the HPS quasicrystal specimen is measured from 2 K to 300 K, revealing a significantly elevated value in comparison to samples prepared via alternative methods. Nanoindentation testing demonstrates exceptional hardness and elastic modulus of our Al$_{65}$Cu$_{20}$Fe$_{15}$ quasicrystal, consistent with existing results. The ratio of hardness to elastic modulus further highlight the potential superior wear resistance of the Al$_{65}$Cu$_{20}$Fe$_{15}$ quasicrystal. Differential scanning calorimetry measurement conducted on the HPS Al$_{65}$Cu$_{20}$Fe$_{15}$ quasicrystals reveal a high melting point of 877 $^\circ$C.
|
Received: 27 February 2025
Revised: 28 April 2025
Accepted manuscript online: 07 May 2025
|
|
PACS:
|
61.44.Br
|
(Quasicrystals)
|
| |
71.23.Ft
|
(Quasicrystals)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52173231 and 51925105), the Natural Science Foundation of Hebei Province, China (Grant No. E2022203182), and The Innovation Ability Promotion Project of Hebei supported by Hebei Key Laboratory for Optimizing Metal Product Technology and Performance (Grant No. 22567609H). Marek Mihalkovič has been supported by the grants from Slovak National Agencies (Grant Nos. VEGA 2/0144/21, APVV19-0369, and APVV-20-0124). Calculations were performed at the Computing Center of the Slovak Academy of Sciences using the supercomputing infrastructure acquired under Projects ITMS 26230120002 and 26210120002 and EuroHPC (Grant No. 101101903) (Supercomputer Devana). |
Corresponding Authors:
Changzeng Fan
E-mail: chzfan@ysu.edu.cn
|
Cite this article:
Yibo Liu(刘一博), Changzeng Fan(范长增), Zhefeng Xu(许哲峰), Ruidong Fu(付瑞东), Feng Ke(柯峰), Lin Wang(王霖), Bin Wen(温斌), Lifeng Zhang(张立峰), Marek Mihalkovič, and Bo Xu(徐波) Physical properties of high-pressure synthesized Al65Cu20Fe15 quasicrystal 2025 Chin. Phys. B 34 096103
|
[1] Shechtman D, Blech I, Gratias D and Cahn J W 1984 Phys. Rev. Lett. 53 1951 [2] Tsai A P, Inoue A and Masumoto T 1987 Jpn. J. Appl. Phys. 26 L1505 [3] Bindi L, Steinhardt P J, Yao N and Lu P J 2009 Science 324 1306 [4] Bindi L, Steinhardt P J, Yao N and Lu P J 2011 Am. Mineral. 96 928 [5] Li C, Carey C, Li D, Caputo M, Bouch R and Hampikian H 2018 Mater. Charact. 140 162 [6] Evangelista K and Cavalcante D 2021 J. Mater. Res. Technol. 15 1496 [7] Aghaali V, Rahimipour M R, Faraji A and Ebadzadeh T 2024 Mater. Today Commun. 38 107499 [8] Qiao Q, Wang J, Cai Z Q, Feng S D, Song Z Q, Huo B K, Li Z J and Wang L M 2023 Chin. Phys. B 32 116401 [9] Mitka M, Góral A and Lityńska-Dobrzyńska L 2021 J. Mater. Sci. 56 11071 [10] Lapér M L, Nunes E H, Houmard M and Wolf W 2023 Mater. Res. 26 e20230190 [11] Huttunen-Saarivirta E and Vuorinen J 2005 Intermetallics 13 885 [12] Nguyen H V, Do N B, Nguyen THO, Nguyen C S, Trinh V T, Le HT and Jorge Junior A M 2023 J. Mater. Res. 38 644 [13] Nascimento L 2021 Orbital: Electron. J. Chem. 13 223 [14] Babilas R, Młynarek K, Łoński W, Łukowiec D, Kądziołka-GawełM, Czeppe T, Czeppe L and Temleitner L 2020 Materials 14 54 [15] Li C, Dubovi J and Klein C 2022 Mater. Charact. 191 112158 [16] WolfW, Koga G Y, Schulz R, Savoie S, Kiminami C S, Bolfarini C and Botta W J 2020 J. Therm. Spray Technol. 29 1195 [17] Abaei M, Rahimipour M R, Farvizi M and Eshraghi M J 2023 International Journal of Engineering 36 1880 [18] Babilas R, Bajorek A, Spilka M, Radoń A and Łoński W 2020 Prog. Nat. Sci.-Mater. 30 393 [19] Wang C, Li Z, Iefimov MO and Mordyuk B N 2023 Surf. Eng. 39 532 [20] Huang J R, Takagiwa Y and Tsai A P 2020 J. Phys. Conf. Ser. 1458 012011 [21] Shadangi Y, Bhatt S, Pradhan P, Tiwari A, Tripathi A, Chattopadhyay K and Mukhopadhyay N K 2023 J. Alloys Compd. 960 170586 [22] Takagiwa Y, Maeda R, Ohhashi S and Tsai A P 2021 Materials 14 5238 [23] Zheng J C 2022 Research 2022 9867639 [24] Kamalnath M, Mohan B, Singh A and Thirumavalavan K 2020 Mater. Res. Express 7 026535 [25] Kušter M, Samardžija Z, Komelj M, Huskić M, Bek M, Pierson G, Kouitat-Njiwa R, Dubois J M and Šturm S 2024 Crystals 14 216 [26] Silveira A, e Silva LM, Oliveira T, Castro M, Figueiredo R, Bolfarini C, Botta W J and Wolf W 2022 Mater. Lett. 317 132107 [27] Stagno V, Bindi L, Shibazaki Y, Tange Y, Higo Y, Mao H K, Steinhardt P J and Fei Y 2014 Sci. Rep. 4 5869 [28] Stagno V, Bindi L, Park C, Tkachev S, Prakapenka V B, Mao H K, Hemley R J, Steinhardt P J and Fei Y 2015 Am. Mineral. 100 2412 [29] Takagi S, Kyono A, Mitani S, Sugano N, Nakamoto Y and Hirao N 2015 Mater. Lett. 161 13 [30] Hollister L S, Bindi L, Yao N, Poirier G R, Andronicos C L, MacPherson G J, Lin C, Distler V V, Eddy M P, Kostin A and Kryachko V 2014 Nat. Commun. 5 4040 [31] Lin C, Hollister L S, MacPherson G J, Bindi L, Ma C, Andronicos C L and Steinhardt P J 2017 Sci. Rep. 7 1637 [32] Paszkowicz W 2002 Nucl. Instrum. Meth. B 198 142 [33] Soignard E, McMillan P F, Hejny C and Leinenweber K 2004 J. Solid State Chem. 177 299 [34] Liu X L, Yu Z H, Li J F, Xu Z Z, Zhou C Y, Dong Z H, Zhang L L, Wang X, Yu N, Zou Z Q, Wang X L and Guo Y F 2023 Chin. Phys. B 32 018102 [35] Ming X, He C P, Zhu X Y, Gou H Y and Wen H H 2023 Chin. Phys. Lett. 40 017403 [36] Bragg W H and Bragg W L 1913 Proc. R. Soc. Lond. Ser. A 88 428 [37] Tsai A P, Inoue A and Masumoto T 1989 Mater. Trans. JIM 30 150 [38] Tsai A P, Inoue A, Masumoto T 1989 Mater. Trans. JIM 30 666 [39] Tsai A P, Inoue A, Masumoto T 1988 J. Mater. Sci. Lett. 7 322 [40] Fukamichi K, Masumoto T, Oguchi M, Inoue A, Goto T, Sakakibara T and Todo S 1986 Journal of Physics F: Metal Physics 16 1059 [41] Inoue A, Kimura H and Masumoto T 1987 J. Mater. Sci. 22 1758 [42] Sahnoune A, Ström-Olsen J and Zaluska A 1992 Phys. Rev. B 46 10629 [43] Haberkern R, Lindqvist P and Fritsch G 1993 J. Non-Cryst. Solids 53 303 [44] Klein T, Gozlan A, Berger C, Cyrot-Lackmann F, Calvayrac Y and Quivy A 1990 Europhys. Lett. 13 129 [45] Shalaeva E, Chernyshev YV, Smirnova E and Smirnov S 2013 Phys. Solid State 55 2205 [46] Xin X, Zhang S,Wan P, Liu L, DingW, Li J,Wang Q and Dong C 2022 Thin Solid Films 753 139272 [47] Chowdhury S, De Barra E and Laugier M. 2004 Diamond Relat. Mater. 13 1625 [48] Oliver W C and Pharr G M 2004 J. Mater. Res. 19 3 [49] Sakai M 1993 Acta Metall. Mater. 41 1751 [50] Duan B, Zhang P, Wei X, Wang L, Wei D and Zhen D 2015 Surf. Eng. 31 942 [51] Leyland A and Matthews A 2000 Wear 246 1 [52] Chen L and Chen X 1992 Phys. Status Solidi B 169 15 [53] Mihalkovič M and Widom M 2020 Phys. Rev. Res. 2 013196 [54] Tcherdyntsev V, Kaloshkin S, Shelekhov E, Salimon A, Sartori S and Principi G 2005 Intermetallics 13 841 [55] Asahi N, Maki T, Matsumoto S and Sawai T 1994 Mater. Sci. Eng. A 181 841 [56] Dong Y, Lin X P, Xu R, Zheng R G, Fan Z B, Liu S J andWang Z 2014 J. Rare Earths Nov. 32 1048 [57] Avar B, Gogebakan M and Yilmaz F 2008 Z. Kristallogr. 223 731 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|