Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 096103    DOI: 10.1088/1674-1056/add4fb
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Physical properties of high-pressure synthesized Al65Cu20Fe15 quasicrystal

Yibo Liu(刘一博)1, Changzeng Fan(范长增)1,2,†, Zhefeng Xu(许哲峰)1, Ruidong Fu(付瑞东)1, Feng Ke(柯峰)1, Lin Wang(王霖)1, Bin Wen(温斌)1, Lifeng Zhang(张立峰)1,3, Marek Mihalkovič4, and Bo Xu(徐波)1
1 State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China;
2 Hebei Key Laboratory for Optimizing Metal Product Technology and Performance, Yanshan University, Qinhuangdao 066004, China;
3 School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China;
4 Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia
Abstract  Al$_{65}$Cu$_{20}$Fe$_{15}$ bulk is synthesized with the high-pressure synthesis (HPS) method. Various analytical techniques, such as single crystal x-ray diffraction (SXRD), scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy, and transmission electron microscopy, are employed to characterize the sintered bulk and confirmed its quasicrystalline structure. The electrical resistivity of the HPS quasicrystal specimen is measured from 2 K to 300 K, revealing a significantly elevated value in comparison to samples prepared via alternative methods. Nanoindentation testing demonstrates exceptional hardness and elastic modulus of our Al$_{65}$Cu$_{20}$Fe$_{15}$ quasicrystal, consistent with existing results. The ratio of hardness to elastic modulus further highlight the potential superior wear resistance of the Al$_{65}$Cu$_{20}$Fe$_{15}$ quasicrystal. Differential scanning calorimetry measurement conducted on the HPS Al$_{65}$Cu$_{20}$Fe$_{15}$ quasicrystals reveal a high melting point of 877 $^\circ$C.
Keywords:  Al$_{65}$Cu$_{20}$Fe$_{15}$ quasicrystal      resistivity      microhardness      high-pressure synthesis  
Received:  27 February 2025      Revised:  28 April 2025      Accepted manuscript online:  07 May 2025
PACS:  61.44.Br (Quasicrystals)  
  71.23.Ft (Quasicrystals)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52173231 and 51925105), the Natural Science Foundation of Hebei Province, China (Grant No. E2022203182), and The Innovation Ability Promotion Project of Hebei supported by Hebei Key Laboratory for Optimizing Metal Product Technology and Performance (Grant No. 22567609H). Marek Mihalkovič has been supported by the grants from Slovak National Agencies (Grant Nos. VEGA 2/0144/21, APVV19-0369, and APVV-20-0124). Calculations were performed at the Computing Center of the Slovak Academy of Sciences using the supercomputing infrastructure acquired under Projects ITMS 26230120002 and 26210120002 and EuroHPC (Grant No. 101101903) (Supercomputer Devana).
Corresponding Authors:  Changzeng Fan     E-mail:  chzfan@ysu.edu.cn

Cite this article: 

Yibo Liu(刘一博), Changzeng Fan(范长增), Zhefeng Xu(许哲峰), Ruidong Fu(付瑞东), Feng Ke(柯峰), Lin Wang(王霖), Bin Wen(温斌), Lifeng Zhang(张立峰), Marek Mihalkovič, and Bo Xu(徐波) Physical properties of high-pressure synthesized Al65Cu20Fe15 quasicrystal 2025 Chin. Phys. B 34 096103

[1] Shechtman D, Blech I, Gratias D and Cahn J W 1984 Phys. Rev. Lett. 53 1951
[2] Tsai A P, Inoue A and Masumoto T 1987 Jpn. J. Appl. Phys. 26 L1505
[3] Bindi L, Steinhardt P J, Yao N and Lu P J 2009 Science 324 1306
[4] Bindi L, Steinhardt P J, Yao N and Lu P J 2011 Am. Mineral. 96 928
[5] Li C, Carey C, Li D, Caputo M, Bouch R and Hampikian H 2018 Mater. Charact. 140 162
[6] Evangelista K and Cavalcante D 2021 J. Mater. Res. Technol. 15 1496
[7] Aghaali V, Rahimipour M R, Faraji A and Ebadzadeh T 2024 Mater. Today Commun. 38 107499
[8] Qiao Q, Wang J, Cai Z Q, Feng S D, Song Z Q, Huo B K, Li Z J and Wang L M 2023 Chin. Phys. B 32 116401
[9] Mitka M, Góral A and Lityńska-Dobrzyńska L 2021 J. Mater. Sci. 56 11071
[10] Lapér M L, Nunes E H, Houmard M and Wolf W 2023 Mater. Res. 26 e20230190
[11] Huttunen-Saarivirta E and Vuorinen J 2005 Intermetallics 13 885
[12] Nguyen H V, Do N B, Nguyen THO, Nguyen C S, Trinh V T, Le HT and Jorge Junior A M 2023 J. Mater. Res. 38 644
[13] Nascimento L 2021 Orbital: Electron. J. Chem. 13 223
[14] Babilas R, Młynarek K, Łoński W, Łukowiec D, Kądziołka-GawełM, Czeppe T, Czeppe L and Temleitner L 2020 Materials 14 54
[15] Li C, Dubovi J and Klein C 2022 Mater. Charact. 191 112158
[16] WolfW, Koga G Y, Schulz R, Savoie S, Kiminami C S, Bolfarini C and Botta W J 2020 J. Therm. Spray Technol. 29 1195
[17] Abaei M, Rahimipour M R, Farvizi M and Eshraghi M J 2023 International Journal of Engineering 36 1880
[18] Babilas R, Bajorek A, Spilka M, Radoń A and Łoński W 2020 Prog. Nat. Sci.-Mater. 30 393
[19] Wang C, Li Z, Iefimov MO and Mordyuk B N 2023 Surf. Eng. 39 532
[20] Huang J R, Takagiwa Y and Tsai A P 2020 J. Phys. Conf. Ser. 1458 012011
[21] Shadangi Y, Bhatt S, Pradhan P, Tiwari A, Tripathi A, Chattopadhyay K and Mukhopadhyay N K 2023 J. Alloys Compd. 960 170586
[22] Takagiwa Y, Maeda R, Ohhashi S and Tsai A P 2021 Materials 14 5238
[23] Zheng J C 2022 Research 2022 9867639
[24] Kamalnath M, Mohan B, Singh A and Thirumavalavan K 2020 Mater. Res. Express 7 026535
[25] Kušter M, Samardžija Z, Komelj M, Huskić M, Bek M, Pierson G, Kouitat-Njiwa R, Dubois J M and Šturm S 2024 Crystals 14 216
[26] Silveira A, e Silva LM, Oliveira T, Castro M, Figueiredo R, Bolfarini C, Botta W J and Wolf W 2022 Mater. Lett. 317 132107
[27] Stagno V, Bindi L, Shibazaki Y, Tange Y, Higo Y, Mao H K, Steinhardt P J and Fei Y 2014 Sci. Rep. 4 5869
[28] Stagno V, Bindi L, Park C, Tkachev S, Prakapenka V B, Mao H K, Hemley R J, Steinhardt P J and Fei Y 2015 Am. Mineral. 100 2412
[29] Takagi S, Kyono A, Mitani S, Sugano N, Nakamoto Y and Hirao N 2015 Mater. Lett. 161 13
[30] Hollister L S, Bindi L, Yao N, Poirier G R, Andronicos C L, MacPherson G J, Lin C, Distler V V, Eddy M P, Kostin A and Kryachko V 2014 Nat. Commun. 5 4040
[31] Lin C, Hollister L S, MacPherson G J, Bindi L, Ma C, Andronicos C L and Steinhardt P J 2017 Sci. Rep. 7 1637
[32] Paszkowicz W 2002 Nucl. Instrum. Meth. B 198 142
[33] Soignard E, McMillan P F, Hejny C and Leinenweber K 2004 J. Solid State Chem. 177 299
[34] Liu X L, Yu Z H, Li J F, Xu Z Z, Zhou C Y, Dong Z H, Zhang L L, Wang X, Yu N, Zou Z Q, Wang X L and Guo Y F 2023 Chin. Phys. B 32 018102
[35] Ming X, He C P, Zhu X Y, Gou H Y and Wen H H 2023 Chin. Phys. Lett. 40 017403
[36] Bragg W H and Bragg W L 1913 Proc. R. Soc. Lond. Ser. A 88 428
[37] Tsai A P, Inoue A and Masumoto T 1989 Mater. Trans. JIM 30 150
[38] Tsai A P, Inoue A, Masumoto T 1989 Mater. Trans. JIM 30 666
[39] Tsai A P, Inoue A, Masumoto T 1988 J. Mater. Sci. Lett. 7 322
[40] Fukamichi K, Masumoto T, Oguchi M, Inoue A, Goto T, Sakakibara T and Todo S 1986 Journal of Physics F: Metal Physics 16 1059
[41] Inoue A, Kimura H and Masumoto T 1987 J. Mater. Sci. 22 1758
[42] Sahnoune A, Ström-Olsen J and Zaluska A 1992 Phys. Rev. B 46 10629
[43] Haberkern R, Lindqvist P and Fritsch G 1993 J. Non-Cryst. Solids 53 303
[44] Klein T, Gozlan A, Berger C, Cyrot-Lackmann F, Calvayrac Y and Quivy A 1990 Europhys. Lett. 13 129
[45] Shalaeva E, Chernyshev YV, Smirnova E and Smirnov S 2013 Phys. Solid State 55 2205
[46] Xin X, Zhang S,Wan P, Liu L, DingW, Li J,Wang Q and Dong C 2022 Thin Solid Films 753 139272
[47] Chowdhury S, De Barra E and Laugier M. 2004 Diamond Relat. Mater. 13 1625
[48] Oliver W C and Pharr G M 2004 J. Mater. Res. 19 3
[49] Sakai M 1993 Acta Metall. Mater. 41 1751
[50] Duan B, Zhang P, Wei X, Wang L, Wei D and Zhen D 2015 Surf. Eng. 31 942
[51] Leyland A and Matthews A 2000 Wear 246 1
[52] Chen L and Chen X 1992 Phys. Status Solidi B 169 15
[53] Mihalkovič M and Widom M 2020 Phys. Rev. Res. 2 013196
[54] Tcherdyntsev V, Kaloshkin S, Shelekhov E, Salimon A, Sartori S and Principi G 2005 Intermetallics 13 841
[55] Asahi N, Maki T, Matsumoto S and Sawai T 1994 Mater. Sci. Eng. A 181 841
[56] Dong Y, Lin X P, Xu R, Zheng R G, Fan Z B, Liu S J andWang Z 2014 J. Rare Earths Nov. 32 1048
[57] Avar B, Gogebakan M and Yilmaz F 2008 Z. Kristallogr. 223 731
[1] Pressure-induced metallization and Lifshitz transition in quasi-one-dimensional TiSe3 single crystal
Zhenhai Yu(于振海), Yunguan Ye(叶运观), Pengtao Yang(杨芃焘), Yiming Wang(王弈铭), Liucheng Chen(陈刘城), Chenglin Li(李承霖), Jian Yuan(袁健), Ziyi Liu(刘子儀), Zhiwei Shen(申志伟), Shaojie Wang(王邵杰), Mingtao Li(李明涛), Chaoyang Chu(楚朝阳), Xia Wang(王霞), Jun Li(李俊), Lin Wang(王霖), Wenge Yang(杨文革), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2025, 34(8): 088102.
[2] High-pressure synthesis of an oxynitride perovskite CeNbO2N with Nb4+ charge state
Shengjie Liu(刘胜杰), Xubin Ye(叶旭斌), Zhao Pan(潘昭), Jie Zhang(张杰), Shuai Tang(唐帅), Guangkai Zhang(张广凯), Maocai Pi(皮茂材), Zhiwei Hu(胡志伟), Chien-Te Chen(陈建德), Ting-Shan Chan(詹丁山), Cheng Dong(董成), Tian Cui(崔田), Yanping Huang(黄艳萍), Zhenhua Chi(迟振华), Yao Shen(沈瑶), and Youwen Long(龙有文). Chin. Phys. B, 2025, 34(6): 066202.
[3] Iron nitrides: High-pressure synthesis, nitrogen disordering and local magnetic moment
Yu Tao(陶雨) and Li Lei(雷力). Chin. Phys. B, 2025, 34(6): 068301.
[4] Tailoring-compensated ferrimagnetic state and anomalous Hall effect in quaternary Mn-Ru-V-Ga Heusler compounds
Jin-Jing Liang(梁瑾静), Xue-Kui Xi(郗学奎), Wen-Hong Wang(王文洪), and Yong-Chang Lau(刘永昌). Chin. Phys. B, 2024, 33(7): 077504.
[5] Pressure-induced magnetic phase and structural transition in SmSb2
Tao Li(李涛), Shuyang Wang(王舒阳), Xuliang Chen(陈绪亮), Chunhua Chen(陈春华), Yong Fang(房勇), and Zhaorong Yang(杨昭荣). Chin. Phys. B, 2024, 33(6): 066401.
[6] Hole density dependent magnetic structure and anisotropy in Fe-pnictide superconductor
Yuan-Fang Yue(岳远放), Zhong-Bing Huang(黄忠兵), Huan Li(黎欢),Xing Ming(明 星), and Xiao-Jun Zheng(郑晓军). Chin. Phys. B, 2023, 32(9): 097403.
[7] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[8] Anisotropic superconducting properties of FeSe0.5Te0.5 single crystals
Jia-Ming Zhao(赵佳铭) and Zhi-He Wang(王智河). Chin. Phys. B, 2022, 31(9): 097402.
[9] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[10] Sign reversal of anisotropic magnetoresistance and anomalous thickness-dependent resistivity in Sr2CrWO6/SrTiO3 films
Chunli Yao(姚春丽), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Zitao Zhang(张子涛), Weimin Jiang(姜伟民), Qiang Zhao(赵强), Yujie Qiao(乔宇杰), Meihui Chen(陈美慧), Xingyu Chen(陈星宇), Ruifen Dou(窦瑞芬), Changmin Xiong(熊昌民), and Jiacai Nie(聂家财). Chin. Phys. B, 2022, 31(10): 107302.
[11] Magnetic properties and resistivity of a 2:17-type SmCo magnet doped with ZrO2
Qi-Qi Yang(杨棋棋), Zhuang Liu(刘壮), Chao-Yue Zhang(张超越), Hai-Chen Wu(吴海辰), Xiao-Lei Gao(高晓磊), Yi-Long Ma(马毅龙), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(7): 077504.
[12] Critical behavior and effect of Sr substitution in double perovskite Ca2CrSbO6
Yuan-Yuan Jiao(焦媛媛), Jian-Ping Sun(孙建平), and Qi Cui(崔琦). Chin. Phys. B, 2021, 30(3): 037501.
[13] Suppression of ion migration in perovskite materials by pulse-voltage method
Xue-Yan Wang(王雪岩), Hu Wang(王虎), Luo-Ran Chen(陈烙然), Yu-Chuan Shao(邵宇川), and Jian-Da Shao(邵建达). Chin. Phys. B, 2021, 30(11): 118104.
[14] Doping effect on the structure and physical properties of quasi-one-dimensional compounds Ba9Co3(Se1-xSx)15 (x = 0-0.2)
Lei Duan(段磊), Xian-Cheng Wang(望贤成), Jun Zhang(张俊), Jian-Fa Zhao(赵建发), Wen-Min Li(李文敏), Li-Peng Cao(曹立朋), Zhi-Wei Zhao(赵志伟), Changjiang Xiao(肖长江), Ying Ren(任瑛), Shun Wang(王顺), Jinlong Zhu(朱金龙), and Chang-Qing Jin(靳常青). Chin. Phys. B, 2021, 30(10): 106101.
[15] Growth and physical characterization of high resistivityFe: β-Ga2O3 crystals
Hao Zhang(张浩), Hui-Li Tang(唐慧丽), Nuo-Tian He(何诺天), Zhi-Chao Zhu(朱智超), Jia-Wen Chen(陈佳文), Bo Liu(刘波), Jun Xu(徐军). Chin. Phys. B, 2020, 29(8): 087201.
No Suggested Reading articles found!