Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 090202    DOI: 10.1088/1674-1056/adce9c
GENERAL Prev   Next  

The N-soliton solutions of the three-component coupled nonlinear Hirota equations based on Riemann-Hilbert method

Xin Wang(王昕)† and Zhi-Hui Zhang(张智辉)
Department of Fundamentals, Air Force Engineering University, Xi'an 710051, China
Abstract  In order to more accurately and effectively consider the propagation process of solitons in electromagnetic pulse waves and make full use of wavelength division multiplexing, we study a class of high-order three-component Hirota equations by the Riemann-Hilbert method. Under zero boundary conditions and given initial conditions $q_{j}(x,0)$, the $N$-soliton solutions of the equations are obtained by constructing and solving Riemann-Hilbert problems based on matrix spectral problem. Specifically, we discuss the cases of $N=1, 2$, analyze the dynamical properties of $1$-soliton and $2$-soliton solutions through numerical simulations, and summarize the effect of integrable perturbations and spectral parameters on soliton motion.
Keywords:  coupled Hirota equation      soliton solutions      Riemann-Hilbert problem      matrix spectral problem  
Received:  21 February 2025      Revised:  20 March 2025      Accepted manuscript online:  21 April 2025
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  02.30.Ik (Integrable systems)  
  02.40.Xx (Singularity theory)  
Fund: Project supported by Shaanxi Scholarship Council of China (Grant No. 2021-030), the Youth Scientific Research Project of Shaanxi Province, China (Grant No. 202103021223060), and the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. S2025-JC-QN-1854).
Corresponding Authors:  Xin Wang     E-mail:  wangxin8058@163.com

Cite this article: 

Xin Wang(王昕) and Zhi-Hui Zhang(张智辉) The N-soliton solutions of the three-component coupled nonlinear Hirota equations based on Riemann-Hilbert method 2025 Chin. Phys. B 34 090202

[1] Borhanifar A and Abazari R 2010 Opt. Commun. 283 2026
[2] Najafi M and Arbabi S 2014 Commun. Theor. Phys. 62 301
[3] Lou Y, Zhang Y and Ye R 2022 Int. J. Comput. Math. 99 1989
[4] Geng X and Lv Y 2012 Nonlinear Dyn. 69 1621
[5] Kudryashov N A 2022 Appl. Math. Lett. 128 107888
[6] Russel J S 1838 Rep. Br. Ass. Adv. Sci. 14 417
[7] Korteweg D J and De Vries G 1895 Lond. Edinb. Dubl. Phil. Mag. 39 422
[8] Zeng L, Belić M R, Mihalache D and Zhu X 2024 Chaos, Solitons and Fractals 181 114645
[9] Wei B and Liang J 2022 Nonlinear Dyn. 109 2969
[10] Wu Q L, Zhang H Q and Hang C 2021 Appl. Math. Lett. 120 107256
[11] Ding C C, Zhou Q, Triki H, Sun Y and Biswas A 2023 Nonlinear Dyn. 111 2621
[12] Wu X H and Gao Y T 2023 Appl. Math. Lett. 137 108476
[13] Yu Y, Kong C, Li B, Kang J and Wong K K Y 2019 Opt. Lett. 44 4813
[14] Adeyemo O D and Khalique C M 2023 Commun. Nonlinear Sci. 123 107261
[15] Ismael H F and Sulaiman T A 2023 Chaos, Solitons and Fractals 169 113213
[16] Li Z Q, Tian S F and Yang J J 2022 Adv. Math. 409 108639
[17] Gardner C S, Greene J M, Kruskal M D and Miura R M 1967 Phys. Rev. Lett. 19 1095
[18] Chen H H 1974 Phys. Rev. Lett. 33 925
[19] Xie X Y, Tian B, Chai J, Wu X Y and Jiang Y 2016 Nonlinear Dyn. 86 131
[20] Guo B, Ling L and Liu Q P 2013 Stud. Appl. Math. 130 317
[21] Li Z Q, Tian S F and Yang J J 2022 Ann. Henri Poincar 23 2611
[22] Chatziafratis A, Ozawa T and Tian S F 2024 Math. Ann 389 3535
[23] Hirota R 1973 J. Math. Phys. 14 805
[24] Mao J J, Tian S F, Zou L and Zhang T T 2018 Mod. Phys. Lett. B 32 1850143
[25] Ma W X 2020 Opt. Quantum Electron. 52 511
[26] Zuo D W and Zhang G F 2019 Appl. Math. Lett. 93 66
[27] Bai Y S, Liu Y N and Ma W X 2023 Nonlinear Dyn. 111 18439
[28] Ji J L, Kai Y, Xu Z W and Ma L Y 2022 Chaos, Solitons and Fractals 164 112761
[29] Wang H and Zhang Y 2023 J. Comput. Appl. Math. 420 114812
[30] Tasgal R S and Potasek M J 1992 J. Math. Phys. 33 1208
[31] Xu T and Chen Y 2017 Z. Naturforsch. A 72 1053
[32] Yang J 2010 Nonlinear waves in integrable and nonintegrable systems (Philadelphia: SIAM) pp. 15-77
[1] Riemann-Hilbert approach to the higher-order Kaup-Newell equation on the half line
Hui Yu(于慧) and Ning Zhang(张宁). Chin. Phys. B, 2025, 34(3): 030203.
[2] Dynamics of fundamental and double-pole breathers and solitons for a nonlinear Schrödinger equation with sextic operator under non-zero boundary conditions
Luyao Zhang(张路瑶) and Xiyang Xie(解西阳). Chin. Phys. B, 2024, 33(9): 090207.
[3] Riemann-Hilbert problem for the defocusing Lakshmanan-Porsezian-Daniel equation with fully asymmetric nonzero boundary conditions
Jianying Ji(纪建英) and Xiyang Xie(解西阳). Chin. Phys. B, 2024, 33(9): 090201.
[4] Multi-soliton solutions of coupled Lakshmanan-Porsezian-Daniel equations with variable coefficients under nonzero boundary conditions
Hui-Chao Zhao(赵会超), Lei-Nuo Ma(马雷诺), and Xi-Yang Xie(解西阳). Chin. Phys. B, 2024, 33(8): 080201.
[5] An integrable generalization of the Fokas-Lenells equation: Darboux transformation, reduction and explicit soliton solutions
Jiao Wei(魏姣), Xianguo Geng(耿献国), and Xin Wang(王鑫). Chin. Phys. B, 2024, 33(7): 070202.
[6] Multi-soliton solutions, breather-like and bound-state solitons for complex modified Korteweg-de Vries equation in optical fibers
Zhong-Zhou Lan(兰中周). Chin. Phys. B, 2024, 33(6): 060201.
[7] Interaction solutions and localized waves to the (2+1)-dimensional Hirota-Satsuma-Ito equation with variable coefficient
Xinying Yan(闫鑫颖), Jinzhou Liu(刘锦洲), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2023, 32(7): 070201.
[8] Riemann-Hilbert approach of the complex Sharma-Tasso-Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[9] Matrix integrable fifth-order mKdV equations and their soliton solutions
Wen-Xiu Ma(马文秀). Chin. Phys. B, 2023, 32(2): 020201.
[10] Diverse soliton solutions and dynamical analysis of the discrete coupled mKdV equation with 4×4 Lax pair
Xue-Ke Liu(刘雪珂) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2023, 32(12): 120203.
[11] Darboux transformation, infinite conservation laws, and exact solutions for the nonlocal Hirota equation with variable coefficients
Jinzhou Liu(刘锦洲), Xinying Yan(闫鑫颖), Meng Jin(金梦), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2023, 32(12): 120401.
[12] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[13] Riemann-Hilbert approach and N double-pole solutions for a nonlinear Schrödinger-type equation
Guofei Zhang(张国飞), Jingsong He(贺劲松), and Yi Cheng(程艺). Chin. Phys. B, 2022, 31(11): 110201.
[14] Soliton, breather, and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints
Jun-Cai Pu(蒲俊才), Jun Li(李军), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(6): 060202.
[15] Soliton interactions and asymptotic state analysis in a discrete nonlocal nonlinear self-dual network equation of reverse-space type
Cui-Lian Yuan(袁翠连) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2021, 30(3): 030201.
No Suggested Reading articles found!