Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 124210    DOI: 10.1088/1674-1056/ac2804
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Refocusing and locating effect of fluorescence scattering field

Jian-Gong Cui(崔建功)1, Ya-Xin Yu(余亚鑫)1, Xiao-Xia Chu(楚晓霞)1, Rong-Yu Zhao(赵荣宇)1, Min Zhu(祝敏)1, Fan Meng(孟凡)2,†, and Wen-Dong Zhang(张文栋)1
1 State Key Laboratory of Dynamics Testing Technology, North University of China, Taiyuan 030051, China;
2 The School of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
Abstract  Optical imaging deep inside scattering medium has always been one of the challenges in the field of bioimaging, which significantly drawbacks the employment of con-focal microscopy system. Although a variety of feedback techniques, such as acoustic or nonlinear fluorescence-based schemes have realized the refocusing of the coherent light, the problems of non-invasively refocusing and locating of linearly-excited fluorescent beads inside the scattering medium have not been thoroughly explored. In this paper, we linearly excited the fluorescent beads inside a scattering medium by using our homemade optical con-focal system, collected the fluorescence scattering light as the optimized target, and established a theoretical model of target contrast enhancement, which is consistent with the experimental data. By improving both the cost function and variation rate within the genetic algorithm, we could refocus the fluorescence scattering field while improving the contrast enhancement factor to 12.8 dB. Then, the positions of the fluorescent beads are reconstructed by sub-pixel accuracy centroid localization algorithm, and the corresponding error is no more than 4.2 μ with several fluorescent beads within the field of view. Finally, the main factors such as the number of fluorescent beads, the thickness of the scattering medium, the modulating parameter, the experimental noise and the system long-term stability are analyzed and discussed in detail. This study proves the feasibility of reconstructing fluorescent labeled cells inside biological tissues, which provides certain reference value for deep imaging of biological tissues.
Keywords:  optical focusing      bioimaging      genetic algorithm      centroid locating  
Received:  21 July 2021      Revised:  14 September 2021      Accepted manuscript online:  18 September 2021
PACS:  42.30.-d (Imaging and optical processing)  
  42.30.Va (Image forming and processing)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFC0119800), the Youth Talent Support Program of Universities of Hebei Province, China (Grant No. BJ2021038), the National Natural Science Foundation of China (Grant No. 12004265), the Natural Science Foundation of Hebei Province, China (Grant No. A2020210001), and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi, China (Grant No. 2019L0541).
Corresponding Authors:  Fan Meng     E-mail:  mengfan3426@126.com

Cite this article: 

Jian-Gong Cui(崔建功), Ya-Xin Yu(余亚鑫), Xiao-Xia Chu(楚晓霞), Rong-Yu Zhao(赵荣宇), Min Zhu(祝敏), Fan Meng(孟凡), and Wen-Dong Zhang(张文栋) Refocusing and locating effect of fluorescence scattering field 2021 Chin. Phys. B 30 124210

[1] Chang C Y, Cheng L C, Su H W, Hu Y, Y, Cho K C, Yen W C, Xu C, Dong C Y and Chen S J 2014 Biomed. Opt. Express 5 001768
[2] Lai P, Wang L, Tay J W and Wang L V 2015 Nat. Photon. 9 126
[3] Tomáimár, Mazilu M and Dholakia K 2010 Nat. Photon. 4 388
[4] Lin H, Shao Y, Qu J, Yin J, Chen S and Niu H 2008 Acta. Phys. Sin. 57 7641 (in Chinese)
[5] Vellekoop I M and Aegerter C M 2010 Opt. Lett. 35 1245
[6] Goodman J W 1976 J. Opt. Soc. Am. 66 1145
[7] Boniface A, Dong J and Gigan S 2020 Nat. Commun. 11 6154
[8] Horstmeyer R, Ruan H and Yang C 2015 Nat. Photon. 9 563
[9] Yu H, Park J, Lee K R, Yoon J, Kim K D and Lee S 2015 Curr. Appl. Phys. 15 632
[10] Velsink M C, Amitonova L V and Pinkse P 2021 Opt. Express 29 272
[11] Vellekoop I M and Mosk A P 2007 Opt. Lett. 32 2309
[12] Vellekoop I M and Mosk A P 2008 Opt. Commun. 281 3071
[13] Cui M, Mcdowell E J and Yang C 2010 Opt. Express 18 25
[14] Conchello J A and Lichtman J W 2005 Nat. Methods 2 920
[15] Ghielmetti G and Aegerter C M 2014 Opt. Express 22 1981
[16] Meng F, Hu J, Wang H, Zou G, Cui J and Zhao Y 2019 Acta. Phy. Sin. 68 237801 (in Chinese)
[17] Matthias H, Christian S, Sophie B and Jacopo B 2018 Opt. Express 26 9866
[18] Li M, Fang L J and Pang L 2019 Chin. Phys. B 28 074207
[19] Stern G and Katz O 2019 Opt. Lett. 44 143
[20] Daniel A, Oron D and Silberberg Y 2019 Opt. Express 27 21778
[21] Lisyansky A A, Garcia N and Genack A Z 1992 Phys. Rev. B 46 14475
[22] Wallace M J, Naimi S T, Jain G, Mckenna R and Donegan J F 2020 Opt. Express 28 8169
[23] Conkey D B, Brown A N, Caravaca-Aguirre A M and Piestun R 2012 Opt. Express 20 4840
[24] Bender I, Yilmaz H, Bromberg Y and Cao H 2019 Apl. Photon. 4 110806
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[3] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[4] Design optimization of broadband extreme ultraviolet polarizer in high-dimensional objective space
Shang-Qi Kuang(匡尚奇), Bo-Chao Li(李博超), Yi Wang(王依), Xue-Peng Gong(龚学鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(7): 077802.
[5] A spintronic memristive circuit on the optimized RBF-MLP neural network
Yuan Ge(葛源), Jie Li(李杰), Wenwu Jiang(蒋文武), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(11): 110702.
[6] A novel receiver-transmitter metasurface for a high-aperture-efficiency Fabry-Perot resonator antenna
Peng Xie(谢鹏), Guangming Wang(王光明), Binfeng Zong(宗彬锋), and Xiaojun Zou(邹晓鋆). Chin. Phys. B, 2021, 30(8): 084103.
[7] Optimized dithering technique in frequency domain for high-quality three-dimensional depth data acquisition
Ning Cai(蔡宁), Zhe-Bo Chen(陈浙泊), Xiang-Qun Cao(曹向群), Bin Lin(林斌). Chin. Phys. B, 2019, 28(8): 084202.
[8] Multi-objective strategy to optimize dithering technique for high-quality three-dimensional shape measurement
Ning Cai(蔡宁), Zhe-Bo Chen(陈浙泊), Xiang-Qun Cao(曹向群), Bin Lin(林斌). Chin. Phys. B, 2019, 28(10): 104210.
[9] Broadband achromatic phase retarder based on metal-multilayer dielectric grating
Na Li(李娜), Wei-Jin Kong(孔伟金), Feng Xia(夏峰), Mao-Jin Yun(云茂金). Chin. Phys. B, 2018, 27(5): 054202.
[10] Electronic transport properties of lead nanowires
Lishu Zhang(张力舒), Yi Zhou(周毅), Xinyue Dai(代新月), Zhenyang Zhao(赵珍阳), Hui Li(李辉). Chin. Phys. B, 2017, 26(7): 073102.
[11] Simple and universal method in designs of high-efficiency diffractive optical elements for spectrum separation and beam concentration
Wen-Qi Xu(徐文琪), Dong-Feng Lin(林冬风), Xin Xu(许信), Jia-Sheng Ye(叶佳声), Xin-Ke Wang(王新柯), Sheng-Fei Feng(冯胜飞), Wen-Feng Sun(孙文峰), Peng Han(韩鹏), Yan Zhang(张岩), Qing-Bo Meng(孟庆波), Guo-Zhen Yang(杨国桢). Chin. Phys. B, 2017, 26(7): 074202.
[12] Optimization of multi-color laser waveform for high-order harmonic generation
Cheng Jin(金成), C D Lin(林启东). Chin. Phys. B, 2016, 25(9): 094213.
[13] An improved genetic algorithm with dynamic topology
Kai-Quan Cai(蔡开泉), Yan-Wu Tang(唐焱武), Xue-Jun Zhang(张学军), Xiang-Min Guan(管祥民). Chin. Phys. B, 2016, 25(12): 128904.
[14] Application of the nonlinear time series prediction method of genetic algorithm for forecasting surface wind of point station in the South China Sea with scatterometer observations
Jian Zhong(钟剑), Gang Dong(董钢), Yimei Sun(孙一妹), Zhaoyang Zhang(张钊扬), Yuqin Wu(吴玉琴). Chin. Phys. B, 2016, 25(11): 110502.
[15] Design of ultra wideband microwave absorber effectual for objects of arbitrary shape
Gong Yuan-Xun (宫元勋), Zhou Zhong-Xiang (周忠祥), Jiang Jian-Tang (姜建堂), Zhao Hong-Jie (赵宏杰). Chin. Phys. B, 2015, 24(12): 124101.
No Suggested Reading articles found!