Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 050702    DOI: 10.1088/1674-1056/adb94a
GENERAL Prev   Next  

Deep learning-enabled inverse design of polarization-selective structural color based on coding metasurface

Haolin Yang(杨昊霖)1, Bo Ni(倪波)1, Junhong Guo(郭俊宏)2, Hua Zhou(周华)1,†, and Jianhua Chang(常建华)1
1 Jiangsu Key Laboratory of Meteorological Observation and Information Processing, School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China;
2 College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Abstract  Structural colors based on metasurfaces have very promising applications in areas such as optical image encryption and color printing. Herein, we propose a deep learning-enabled reverse design of polarization-selective structural color based on coding metasurface. In this study, the long short-term memory (LSTM) neural network is presented to enable the forward and inverse mapping between coding metasurface structure and corresponding color. The results show that the method can achieve 98% accuracy for the forward prediction of color and 93% accuracy for the inverse design of the structure. Moreover, a cascaded architecture is adopted to train the inverse neural network model, which can solve the non-uniqueness problem of the polarization-selective color reverse design. This study provides a new path for the application and development of structural colors.
Keywords:  deep learning      inverse design      coding metasurface      structural color      polarization-selective  
Received:  06 December 2024      Revised:  05 February 2025      Accepted manuscript online:  24 February 2025
PACS:  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  78.20.Bh (Theory, models, and numerical simulation)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  42.79.-e (Optical elements, devices, and systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62375137 and 62175114).
Corresponding Authors:  Hua Zhou     E-mail:  hzhou@nuist.edu.cn

Cite this article: 

Haolin Yang(杨昊霖), Bo Ni(倪波), Junhong Guo(郭俊宏), Hua Zhou(周华), and Jianhua Chang(常建华) Deep learning-enabled inverse design of polarization-selective structural color based on coding metasurface 2025 Chin. Phys. B 34 050702

[1] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F and Gaburro Z 2011 Science 334 333
[2] Xie X, Pu M B, Jin J J, Xu M F, Guo Y H, Li X, Gao P, Ma X L and Luo X G 2021 Phys. Rev. Lett. 126 183902
[3] Kumar K, Duan H G, Hegde R S, Koh S C W, Wei J N and Yang J K W 2012 Nat. Nanotechnol. 7 557
[4] Roberts A S, Pors A, Albrektsen O and Bozhevolnyi S I 2014 Nano Lett. 14 783
[5] Wu B Y, Wang M J, Sun Y S, Wu F, Shi Z X and Wu X H 2022 Adv. Compos. Hybrid Mater. 5 2527
[6] Yan Z D, Tang C J, Wu G H, Tang Y M, Gu P, Chen J, Liu Z Q and Huang Z 2021 Nanomaterials 11 63
[7] Pei Y, Sang T, Mi Q, Wang J C and Wang Y K 2022 J. Opt. 24 024001
[8] Reza M R 2021 Photon. Nanostruct. 43 100883
[9] Wang X Y, Chen M, Zhao W L, Li R J, Shi X Y, Han W H, Liu J B, Teng C X, Deng S J, Cheng Y and Yuan L B 2024 Opt. Laser Technol. 170 110190
[10] Liu Y Q, Chen W Q, Du X M, Shu Y C, Wu L J, Ren Z R, Yin H C, Sun J H, Qi K A, Che Y X and Li L S 2023 Result Phys. 47 106366
[11] Cui T J, Qi M Q, Wan X, Zhao J and Cheng Q 2014 Light Sci. Appl. 3 e218
[12] Wei Y X, Zhao M and Yang Z Y 2022 Opt. Lett. 47 5344
[13] Wu Z P, Zhang Z Q, Xu Y J, Zhai Y S, Zhang C R, Wang B Z and Wang Q L 2022 Opt. Lett. 47 4548
[14] Li H X, Long B, Wang T, Zhou F, Xu Y L and Zhang Z P 2024 Opt. Commun. 554 130205
[15] Cheng T, Ma Y K, Zhao H H, Fei T H, Liu L H and Yang J Y 2023 Nanophotonics 12 3121
[16] Zhou Y T, Wang Q Y, Ji Z Q and Zeng P 2022 Photonics 9 402
[17] Wen Y, Lin J, Chen K L, Lin Y S and Yang B R 2022 Opt. Laser Technol. 150 108004
[18] Gu J T, Liu Y, Meng N N, Sahmuganathan V, Tan S C, Sudijono, J, Tang J C, Venkatasubramanian E, Mallick A, Tjiptoharson F, Rezaei S D, Teo S L, Zhu Q, Chen Y J, Lin M, Dong Z G and Loh K P 2023 Adv. Opt. Mater. 11 2202826
[19] Wang L, Wang T, Yan R Q, Yue X Z, Wang H M, Wang Y D, Zhang J Y, Yuan X Y, Zeng J W and Wang J 2023 Nano Lett. 23 5581
[20] Li D Y, Wang W, Chu L Y and Deng N N 2023 Nano Lett. 23 9657
[21] Yang B, Liu W W, Li Z C, Cheng H, Choi D Y, Chen S Q and Tian J G 2019 Nano Lett. 19 4221
[22] Namhwa K and Seok E H 2023 J. Korean Phys. Soc. 82 166
[23] Liu X, Huang Z and Zang J F 2020 Nano Lett. 20 8739
[24] Zhang R, Guo X, Qiu H, Liu X, Han M, Jia T and Cheng H 2021 JETP Lett. 114 371
[25] Li X Z, Shu J, Gu W H and Gao L 2019 Opt. Mater. Express 9 3857
[26] Liu Z C, Zhu D Y, Rodrigues S P, Lee K T and Cai W S 2018 Nano Lett. 18 6570
[27] Liu Z C, Zhu D Y, Lee K T, Kim A S, Raju L and Cai W S 2020 Adv. Mater. 32 1904790
[28] Zhu L, Zhang C, Dong L, Rong M X, Gong J Y and Meng F Y 2023 Phys. Scr. 98 105501
[29] Ding Z P, Su W, Luo Y L, Ye L P, Li W L, Zhou Y H, Zou J F, Tang B and Yao H B 2024 Nanoscale 16 1384
[30] Ghorbani F, Shabanpour J, Beyraghi S, Soleimani H, Oraizi H and Soleimani M 2021 Appl. Phys. A 127 869
[31] Sajedian I, Kim J and Rho J 2019 Microsyst. Nanoeng. 5 27
[32] Wang J H, Lin Z C, Fan Y, Mei L Y, Deng W Q, Lv J W and Xu Z J 2022 Materials 15 7008
[33] Ma T G, Wang H Z and Guo L J 2024 Opto-Electron. Adv. 7 240062
[34] Palik E D 1985 Handbook of Optical Constants (Academic Press)
[35] Duan X Y, Kamin S and Liu N 2018 Nat. Commun. 8 14606
[36] Xu Y L, Li H X, Zhang X, Liu W J, Zhang Z P, Qin S J and Liu J T 2021 Opt. Express 29 32491
[37] M. Quinten 2001 Appl. Phys. B 73 317
[38] Costa T L, Hamer R D, Nagy B V, BarboniMT S, Gualtieri M, Boggio P S and Ventura D F 2015 Exp. Brain Res. 233 1213
[1] Trajectory tracking on the optimal path of two-dimensional quadratic barrier escaping
Zengxuan Zhao(赵曾轩), Xiuying Zhang(张秀颖), Pengchen Zhao(赵鹏琛), Chunyang Wang(王春阳), Chunlei Xia(夏春雷), Mushtaq Rana Imran, and Joelous Malamula Nyasulu. Chin. Phys. B, 2025, 34(5): 050205.
[2] Broadband polarization-independent terahertz multifunctional liquid crystal coding metasurface based on topological optimization
Yu Chen(陈羽), Wu-Hao Cao(曹吴昊), Jia-Qi Li(李嘉琦), Ming-Zhe Zhang(张明哲), Xin-Yi Du(杜欣怡), Ding-Shan Gao(郜定山), and Pei-Li Li(李培丽). Chin. Phys. B, 2025, 34(4): 044205.
[3] Learning complex nonlinear physical systems using wavelet neural operators
Yanan Guo(郭亚楠), Xiaoqun Cao(曹小群), Hongze Leng(冷洪泽), and Junqiang Song(宋君强). Chin. Phys. B, 2025, 34(3): 034702.
[4] Accurate prediction of essential proteins using ensemble machine learning
Dezhi Lu(鲁德志), Hao Wu(吴淏), Yutong Hou(侯俞彤), Yuncheng Wu(吴云成), Yuanyuan Liu(刘媛媛), and Jinwu Wang(王金武). Chin. Phys. B, 2025, 34(1): 018901.
[5] A large language model-powered literature review for high-angle annular dark field imaging
Wenhao Yuan(袁文浩), Cheng Peng(彭程), and Qian He(何迁). Chin. Phys. B, 2024, 33(9): 098703.
[6] High-quality ghost imaging based on undersampled natural-order Hadamard source
Kang Liu(刘炕), Cheng Zhou(周成), Jipeng Huang(黄继鹏), Hongwu Qin(秦宏伍), Xuan Liu(刘轩), Xinwei Li(李鑫伟), and Lijun Song(宋立军). Chin. Phys. B, 2024, 33(9): 094204.
[7] A graph neural network approach to the inverse design for thermal transparency with periodic interparticle system
Bin Liu(刘斌) and Yixi Wang(王译浠). Chin. Phys. B, 2024, 33(8): 084401.
[8] Properties of radiation defects and threshold energy of displacement in zirconium hydride obtained by new deep-learning potential
Xi Wang(王玺), Meng Tang(唐孟), Ming-Xuan Jiang(蒋明璇), Yang-Chun Chen(陈阳春), Zhi-Xiao Liu(刘智骁), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2024, 33(7): 076103.
[9] Image segmentation of exfoliated two-dimensional materials by generative adversarial network-based data augmentation
Xiaoyu Cheng(程晓昱), Chenxue Xie(解晨雪), Yulun Liu(刘宇伦), Ruixue Bai(白瑞雪), Nanhai Xiao(肖南海), Yanbo Ren(任琰博), Xilin Zhang(张喜林), Hui Ma(马惠), and Chongyun Jiang(蒋崇云). Chin. Phys. B, 2024, 33(3): 030703.
[10] Generation of orbital angular momentum hologram using a modified U-net
Zhi-Gang Zheng(郑志刚), Fei-Fei Han(韩菲菲), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2024, 33(3): 034207.
[11] Quantum state estimation based on deep learning
Haowen Xiao(肖皓文) and Zhiguang Han(韩枝光). Chin. Phys. B, 2024, 33(12): 120307.
[12] Inverse design of nonlinear phononic crystal configurations based on multi-label classification learning neural networks
Kunqi Huang(黄坤琦), Yiran Lin(林懿然), Yun Lai(赖耘), and Xiaozhou Liu(刘晓宙). Chin. Phys. B, 2024, 33(10): 104301.
[13] A deep learning method based on prior knowledge with dual training for solving FPK equation
Denghui Peng(彭登辉), Shenlong Wang(王神龙), and Yuanchen Huang(黄元辰). Chin. Phys. B, 2024, 33(1): 010202.
[14] Crysformer: An attention-based graph neural network for properties prediction of crystals
Tian Wang(王田), Jiahui Chen(陈家辉), Jing Teng(滕婧), Jingang Shi(史金钢),Xinhua Zeng(曾新华), and Hichem Snoussi. Chin. Phys. B, 2023, 32(9): 090703.
[15] Classification and structural characteristics of amorphous materials based on interpretable deep learning
Jiamei Cui(崔佳梅), Yunjie Li(李韵洁), Cai Zhao(赵偲), and Wen Zheng(郑文). Chin. Phys. B, 2023, 32(9): 096101.
No Suggested Reading articles found!