Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 034204    DOI: 10.1088/1674-1056/ac11ec

An ultra-wideband 2-bit coding metasurface using Pancharatnam—Berry phase for radar cross-section reduction

Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新),Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军)
School of Information Engineering, Xijing University, Xi'an 710123, China
Abstract  An ultra-wideband 2-bit coding metasurface is designed for radar cross-section (RCS) reduction. The design process is presented in detail, in which a polarization conversion metasurface (PCM) is first proposed. The proposed PCM can realize ultra-wideband circular polarization (CP) maintaining reflection. Moreover, Pancharatnam—Berry (PB) phase will be generated in the co-polarized reflection coefficient by rotating the metallic patches in its unit cells. Thus, based on the PCM, the four coding elements of a 2-bit coding metasurface are constructed using PB phase, and an ultra-wideband PB 2-bit coding metasurface is proposed according to an appropriate coding sequence. The simulated and experimental results show that the coding metasurface has obvious advantages of wideband and polarization-insensitivity. Compared to a metallic plate of the same size, it can achieve more than 10 dB RCS reduction in the frequency band from 9.8 GHz to 42.6 GHz with a relative bandwidth of 125.2% under normal incidence with arbitrary polarizations.
Keywords:  coding metasurface      Pancharatnam—Berry phase      radar cross-section (RCS)  
Received:  27 May 2021      Revised:  28 June 2021      Accepted manuscript online:  07 July 2021
PACS:  42.25.Ja (Polarization)  
  42.79.Fm (Reflectors, beam splitters, and deflectors)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62072378), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2019JM- 077), and the Xi'an Science and Technology Plan Project, China (Grant No. GXYD20.4).
Corresponding Authors:  Bao-Qin Lin     E-mail:

Cite this article: 

Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新),Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军) An ultra-wideband 2-bit coding metasurface using Pancharatnam—Berry phase for radar cross-section reduction 2022 Chin. Phys. B 31 034204

[1] Ishii Y, Masaki T and Michishita N 2017 IEICE Communications Express 1 1
[2] Wang M, Weng B and Zhao J 2017 Appl. Phys. A 123 434
[3] Wang Y, Zhu D Y and Cui Z J 2020 IEEE Transactions on Terahertz Science and Technology 10 599
[4] Xu H X, Wang G M, Qi M Q, et al. 2012 Phys. Rev. B 86 205104
[5] Zhao M M, Fu S F, Zhou S, et al. 2020 Chin. Phys. B 29 054210
[6] Ma E, Alvarez Y and Las-Heras F 2011 Progress In Electromagnetics Research 107 147
[7] Modi A Y, Balanis C A and Birtcher C R 2017 IEEE Trans. Antennas Propag. 65 5406
[8] Cong L, Cao X Y, Song T and Gao J 2018 Chin. Phys. B 27 114101
[9] Zaker R and Sadeghzadeh A 2018 IET Microwaves Antennas & Propagation 12 1601
[10] Ameri E, Esmaeli S H and Sedighy S H 2018 J. Phys. D:Appl. Phys. 51 285304
[11] Sang D, Chen Q and Ding L 2019 IEEE Trans. Antennas Propag. 67 2604
[12] Cui T J, Qi M Q, Wan X, Zhao J and Cheng Q 2014 Light Sci. Appl. 3 e218
[13] Liu X, Gao J, Xu L, Cao X, Zhao Y and Li S A 2016 IEEE Antennas Wirel. Propag. Lett. 16 724
[14] Hui Z, Yao L, Su J, et al. 2016 Electronics Letters 53 187
[15] Jia Y, Liu Y, Guo Y J, Li K and Gong S 2017 IEEE Trans. Antennas Propag. 65 3291
[16] Sun H, Gu C, Chen X, et al. 2017 Sci. Rep. 7 40782
[17] Hao H, Du S and Zhang T 2019 Progress In Electromagnetics Research M 81 97
[18] Ali L, Li Q, Ali K T, Yi J and Chen X 2019 Materials 12 2708
[19] Yuan F, Xu H X and Jia X Q 2020 IEEE Trans. Antennas Propag. 68 2463
[20] Liang L, Wei M, Yan X, et al. 2016 Sci. Rep. 6 39252
[21] Qi Y, Zhang B, Liu C and Deng X 2020 IEEE Access 8 116675
[22] Han X, Xu H, Chang Y and Lin M 2020 IEEE Access 8 162313
[23] Zhou C and Li J S 2020 Chin. Phys. B 29 078706
[24] Qi Y, Zhang B, Ding J and Zhang T 2021 Chin. Phys. B 30 024211
[25] Yuan F, Wang G M, Xu H X, Cai T and Zou X J 2017 IEEE Antennas Wireless Propag. Lett. 16 3188
[26] Zhuang Y Q, Wang G M and Xu H X 2017 Chin. Phys. B 26 054101
[27] Xu H X, et al. 2018 ACS Photon. 5 1691
[28] Li S H and Li J S 2019 Chin. Phys. B 28 094210
[29] Saifullah Y, Waqas A B, Yang G, Zhang F and Xu F 2019 IEEE Access 7 122378
[30] Wang C, Xu H, Wang Y, Zhu S, Wang C and Mao R 2020 J. Phys. D:Appl. Phys. 53 365001
[1] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[2] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[3] A novel polarization converter based on the band-stop frequency selective surface
Kun Liao(廖昆), Shining Sun(孙世宁), Xinyuan Zheng(郑昕原), Xianxian Shao(邵纤纤), Xiangkun Kong(孔祥鲲), and Shaobin Liu(刘少斌). Chin. Phys. B, 2022, 31(2): 024211.
[4] Efficient manipulation of terahertz waves by multi-bit coding metasurfaces and further applications of such metasurfaces
Yunping Qi(祁云平) Baohe Zhang(张宝和), Jinghui Ding(丁京徽), Ting Zhang(张婷), Xiangxian Wang(王向贤), and Zao Yi(易早). Chin. Phys. B, 2021, 30(2): 024211.
[5] Wideband radar cross section reduction based on absorptive coding metasurface with compound stealth mechanism
Xinmi Yang(杨歆汨), Changrong Liu(刘昌荣), Bo Hou(侯波), and Xiaoyang Zhou(周小阳). Chin. Phys. B, 2021, 30(10): 104102.
No Suggested Reading articles found!