Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 084202    DOI: 10.1088/1674-1056/28/8/084202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Optimized dithering technique in frequency domain for high-quality three-dimensional depth data acquisition

Ning Cai(蔡宁)1,2, Zhe-Bo Chen(陈浙泊)2, Xiang-Qun Cao(曹向群)1, Bin Lin(林斌)1,2
1 State Key Laboratory of Modern Optical Instrumentation, CNERC for Optical Instruments, Zhejiang University, Hangzhou 310027, China;
2 Research Institute of Zhejiang University-Taizhou, Taizhou 318000, China
Abstract  On the basis of the objective functions, dithering optimization techniques can be divided into the intensity-based optimization technique and the phase-based optimization technique. However, both types of techniques are spatial-domain optimization techniques, while their measurement performances are essentially determined by the harmonic components in the frequency domain. In this paper, a novel genetic optimization technique in the frequency domain is proposed for high-quality fringe generation. In addition, to handle the time-consuming difficulty of genetic algorithm (GA), we first optimize a binary patch, then join the optimal binary patches together according to periodicity and symmetry so as to generate a full-size pattern. It is verified that the proposed technique can significantly enhance the measured performance and ensure the robustness to various amounts of defocusing.
Keywords:  fringe generation      genetic algorithm      frequency domain      3D shape measurement  
Received:  10 April 2019      Revised:  24 April 2019      Accepted manuscript online: 
PACS:  42.30.-d (Imaging and optical processing)  
  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
  06.30.Ft (Time and frequency)  
  42.30.Rx (Phase retrieval)  
Fund: Project supported by the Science and Technology Major Projects of Zhejiang Province, China (Grant No. 2017C31080).
Corresponding Authors:  Bin Lin     E-mail:  wjlin@zju.edu.cn

Cite this article: 

Ning Cai(蔡宁), Zhe-Bo Chen(陈浙泊), Xiang-Qun Cao(曹向群), Bin Lin(林斌) Optimized dithering technique in frequency domain for high-quality three-dimensional depth data acquisition 2019 Chin. Phys. B 28 084202

[1] Zhang W Z, Chen Z B, Xia B F, Lin B and Cao X Q 2014 Chin. Phys. B 24 044212
[2] Qiao N S, Cai X H and Yao C M 2009 Chin. Phys. B 18 4881
[3] Zhang L, Chen Q, Zuo C and Feng S J 2018 Appl. Opt. 57 1378
[4] Li B and Zhang S 2017 Opt. Laser Eng. 96 117
[5] Zheng D L, Da F P, Kemao Q and Seah H S 2016 Appl. Opt. 55 572
[6] Hyun J S, Li B W and Zhang S 2017 Opt. Eng. 56 074102
[7] Li B W, Wang Y J, Dai J F, Lohry W and Zhang S 2014 Opt. Lasers Eng. 54 236
[8] Lu F and Wu C D 2017 J. Eur. Opt. Soc.-Rapid Publ. 13 29
[9] Wang Y J, Jiang C F and Zhang S 2017 Opt. Express 25 30177
[10] Li B W, An Y T, Cappelleri D and Zhang S 2017 Int. J. Intell. Robot. Applic. 1 86
[11] Su X Y, Zhou W S, Bally G V and Vukicevic D 1992 Opt. Commun. 94 561
[12] Lei S Y and Zhang S 2009 Opt. Lett. 34 3080
[13] Ayubi G A, Ayubi J A, Martino J M D and Ferrari J A 2010 Opt. Lett. 35 3682
[14] Xian T and Su X Y 2001 Appl. Opt. 40 1201
[15] Schuchman L 1964 IEEE Trans. Commun. Technol. 12 162
[16] Wang Y J and Zhang S 2012 Appl. Opt. 51 6631
[17] Dai J F, Li B W and Zhang S 2014 Opt. Lasers Eng. 53 79
[18] Dai J F and Zhang S 2013 Opt. Laser Eng. 51 790
[19] Holl J H 1975 Adaptation in Natural and Artificial Systems (Ann Arbor: University Michigan Press) pp. 171-198
[20] Lohry W and Zhang S 2013 Opt. Lett. 38 540
[21] Malacara D 2007 Optical Shop Testing, 3rd edn. (New York: Wiley-Interscience) pp. 72-86
[22] Zhang S 2016 High-speed 3D Imaging with Digital Fringe Projection Technique (Boca Raton: CRC Press) pp. 45-68
[23] Lu F, Wu C D and Yang J K 2019 Opt. Commun. 430 246
[24] Rabiner L R and Gold B 1975 Theory and Application of Digital Signal Processing (Upper Saddle River: Prentice-Hall) pp. 103-118
[25] Zu Y X, Zhou J and Zeng C C 2010 Chin. Phys. B 19 119501
[26] Cai K Q, Tang Y W, Zhang X J and Guan X M 2016 Chin. Phys. B 25 128904
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Ghost imaging based on the control of light source bandwidth
Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉). Chin. Phys. B, 2023, 32(3): 034210.
[3] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[4] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[5] Design optimization of broadband extreme ultraviolet polarizer in high-dimensional objective space
Shang-Qi Kuang(匡尚奇), Bo-Chao Li(李博超), Yi Wang(王依), Xue-Peng Gong(龚学鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(7): 077802.
[6] A spintronic memristive circuit on the optimized RBF-MLP neural network
Yuan Ge(葛源), Jie Li(李杰), Wenwu Jiang(蒋文武), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(11): 110702.
[7] A novel receiver-transmitter metasurface for a high-aperture-efficiency Fabry-Perot resonator antenna
Peng Xie(谢鹏), Guangming Wang(王光明), Binfeng Zong(宗彬锋), and Xiaojun Zou(邹晓鋆). Chin. Phys. B, 2021, 30(8): 084103.
[8] Refocusing and locating effect of fluorescence scattering field
Jian-Gong Cui(崔建功), Ya-Xin Yu(余亚鑫), Xiao-Xia Chu(楚晓霞), Rong-Yu Zhao(赵荣宇), Min Zhu(祝敏), Fan Meng(孟凡), and Wen-Dong Zhang(张文栋). Chin. Phys. B, 2021, 30(12): 124210.
[9] Compressive imaging based on multi-scale modulation and reconstruction in spatial frequency domain
Fan Liu(刘璠), Xue-Feng Liu(刘雪峰), Ruo-Ming Lan(蓝若明), Xu-Ri Yao(姚旭日), Shen-Cheng Dou(窦申成), Xiao-Qing Wang(王小庆), and Guang-Jie Zhai(翟光杰). Chin. Phys. B, 2021, 30(1): 014208.
[10] Characteristic signal extracted from a continuous time signal on the aspect of frequency domain
Zhi-Fan Du(杜志凡), Rui-Hao Zhang(张瑞浩), Hong Chen(陈红). Chin. Phys. B, 2019, 28(9): 090502.
[11] Multi-objective strategy to optimize dithering technique for high-quality three-dimensional shape measurement
Ning Cai(蔡宁), Zhe-Bo Chen(陈浙泊), Xiang-Qun Cao(曹向群), Bin Lin(林斌). Chin. Phys. B, 2019, 28(10): 104210.
[12] Wider frequency domain for negative refraction index in a quantized composite right-left handed transmission line
Qi-Xuan Wu(吴奇宣), Shun-Cai Zhao(赵顺才). Chin. Phys. B, 2018, 27(6): 068102.
[13] Broadband achromatic phase retarder based on metal-multilayer dielectric grating
Na Li(李娜), Wei-Jin Kong(孔伟金), Feng Xia(夏峰), Mao-Jin Yun(云茂金). Chin. Phys. B, 2018, 27(5): 054202.
[14] Electronic transport properties of lead nanowires
Lishu Zhang(张力舒), Yi Zhou(周毅), Xinyue Dai(代新月), Zhenyang Zhao(赵珍阳), Hui Li(李辉). Chin. Phys. B, 2017, 26(7): 073102.
[15] Optimization of multi-color laser waveform for high-order harmonic generation
Cheng Jin(金成), C D Lin(林启东). Chin. Phys. B, 2016, 25(9): 094213.
No Suggested Reading articles found!