ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Efficient manipulation of terahertz waves by multi-bit coding metasurfaces and further applications of such metasurfaces |
Yunping Qi(祁云平)1,† Baohe Zhang(张宝和)1, Jinghui Ding(丁京徽)1, Ting Zhang(张婷)1, Xiangxian Wang(王向贤)2, and Zao Yi(易早)3 |
1 College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China; 2 School of Science, Lanzhou University of Technology, Lanzhou 730050, China; 3 Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621900, China |
|
|
Abstract Benefiting from the unprecedented superiority of coding metasurfaces at manipulating electromagnetic waves in the microwave band, in this paper, we use the Pancharatnam-Berry (PB) phase concept to propose a high-efficiency reflective-type coding metasurface that can arbitrarily manipulate the scattering pattern of terahertz waves and implement many novel functionalities. By optimizing the coding sequences, we demonstrate that the designed 1-, 2-, and 3-bit coding metasurfaces with specific coding sequences have the strong ability to control reflected terahertz waves. The two proposed 1-bit coding metasurfaces demonstrate that the reflected terahertz beam can be redirected and arbitrarily controlled. For normally incident x-and y-polarized waves, a 10 dB radar cross-section (RCS) reduction can be achieved from 2.1 THz to 5.2 THz using the designed 2-bit coding metasurface. Moreover, two kinds of orbital angular momentum (OAM) vortex beams with different moduli are generated by a coding metasurface using different coding sequences. Our research provides a new degree of freedom for the sophisticated manipulation of terahertz waves, and contributes to the development of metasurfaces towards practical applications.
|
Received: 16 October 2020
Revised: 17 December 2020
Accepted manuscript online: 28 December 2020
|
PACS:
|
42.68.Mj
|
(Scattering, polarization)
|
|
81.05.Xj
|
(Metamaterials for chiral, bianisotropic and other complex media)
|
|
42.25.Ja
|
(Polarization)
|
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61865008), Northwest Normal University Young Teachers' Scientific Research Capability Upgrading Program (Grant No. NWNU-LKQN2020-11), and the Scientific Research Fund of Sichuan Provincial Science and Technology Department, China (Grant No. 2020YJ0137). |
Corresponding Authors:
†Corresponding author. E-mail: qiyunping@nwnu.edu.cn
|
Cite this article:
Yunping Qi(祁云平) Baohe Zhang(张宝和), Jinghui Ding(丁京徽), Ting Zhang(张婷), Xiangxian Wang(王向贤), and Zao Yi(易早) Efficient manipulation of terahertz waves by multi-bit coding metasurfaces and further applications of such metasurfaces 2021 Chin. Phys. B 30 024211
|
1 Ferguson B and Zhang X C 2020 Nat. Mater. 1 26 2 Song H J and Nagatsuma T 2011 IEEE Transactions on Terahertz Science and Technology 1 256 3 Jepsen P U, Cooke D G and Koch M 2012 Laser & Photonics Reviews 6 418 4 Huang S L, Wang X, Chen Y F, Xu J and Mu B Z 2019 Opt. Express 27 337 5 Grady N K, Heyes J E and Chowdhury D R 2013 Science 340 1304 6 Nagatsuma T, Ducournau G and Renaud C C 2016 Nat. Photon. 10 371 7 Zhao R Q, Zheng Z, Dong G H, Lv T T and Zhang H 2019 Opt. Lett. 44 3482 8 Xu H X, Liu H, Ling X, Sun Y and Yuan F 2017 IEEE Transactions on Antennas and Propagation 65 7378 9 Zheng Q Q, Li Y, Zhang J, Ma H, Wang J, Pang Y, Han Y, Sui S, Shen Y and Chen Y 2017 Sci. Rep. 7 43543 10 Saifullah Y, Waqas A B, Yang G and Xu F 2019 Opt. Express 28 1139 11 Yu Y Z, Xiao F, He C, Jin R and Zhu W 2020 Opt. Express 28 11797 12 Yin L Z, Huang T J, Han F Y, Liu J Y and Liu P K 2019 Opt. Lett. 44 1556 13 Dai J Y, Zhao J, Cheng Q and Cui T J 2018 Light: Science & Applications 7 90 14 Xie X, Pu M P, Liu K P, Jin J J, Ma X L and Luo X G 2019 Photonics Research 7 586 15 Tao Z, Wan X, Pan B C and Cui T J 2017 Appl. Phys. Lett. 110 121901 16 Zhang Y, Xie B, Liu W, Cheng H, Chen S and Tian J 2019 Appl. Phys. Lett. 114 091905 17 Akbari M, Samadi F, Sebak A and Denidni T A 2019 IEEE Antennas and Propagation Magazine 61 40 18 Zhang L, Wan X, Liu S, Yin J Y, Zhang Q, Wu H T and Cui T J 2017 IEEE Trans. Antennas Propag 65 3374 19 Li Y J, Li Z W, Liu Y H, Kong Y and Huang L 2019 Optical Materials 98 109420 20 Qi Y P, Zhang B H, Liu C Q and Deng X Y 2020 IEEE Access 8 116675 21 Sajjad M, Kong X, Liu S, Ahmed A and Wang Q 2020 Phys. Lett. A 384 126567 22 Li S H and Li J S 2019 Chin. Phys. B 28 094210 23 Li H, Wang G, Liang J, Gao X, Hou H and Jia X 2017 IEEE Transactions on Antennas and Propagation 65 1452 24 Li K, Liu Y, Jia Y and Guo Y 2017 IEEE Transactions on Antennas & Propagation 65 4288 25 Sharma A, Gangwar D, Kumar Kanaujia B and Dwari S 2018 AEU-International Journal of Electronics and Communications 91 132 26 Li W, Zhang Y, Wu T, Cao J, Chen Z and Guan J 2019 Results in Physics 12 1964 27 Ma Q, Shi C B, Bai G D, Chen T Y, Noor Ahsan and Cui T J 2017 Advanced Optical Materials 5 1700548 28 Li J, Zhang Y T, Li J, Yan X, Liang, L J, Zhang Z, Huang J, Li J H, Yang Y and Yao J Q 2019 Nanoscale 11 5746 29 Ding G, Chen K, Luo X, Zhao J, Jiang T and Feng Y 2019 Phys. Rev. Applied 11 044043 30 Ding G W, Chen K, Jiang T, Sima B Y, Zhao J M and Feng Y J 2018 Opt. Express 26 20990 31 Qi Y P, Zhang Y, Liu C C, Zhang T, Zhang B H, Wang L Y, Deng X Y and Wang X X 2020 Nanomaterials 10 533 32 Xu K D, Li J, Zhang A and Chen Q 2020 Opt. Express 28 11482 33 Cen C, Zhang Y, Liang C, Chen X and Xiao S 2019 Phys. Lett. A 383 3030 34 Hu J G, Xie W Q, Chen J X, Zhou L M, Liu W, Li D M and Zhan Q W 2020 Opt. Express 28 22095 35 Hu J G, Yao E X, Xie W Q, Liu W, Li D M, Lu Y H and Zhan Q W 2019 Opt. Express 27 18642 36 Hu J G, Wu X H, Li H G, Yao E X, Xie W Q, Liu W, Lu Y H and Ming C G 2019 J. Opt. Soc. Am. B 36 697 37 Wang S, Wu P C, Su, V C, Lai Y C, Chen H C and Chen J W 2017 Nat. Commun. 8 187 38 Zeng J W, Huang F, Guclu C, Veysi M, Albooyeh M, Wickramasinghe H K and Capolino F 2018 ACS Photonics 5 390 39 Wan W, Gao J and Yang X 2017 Advanced Optical Materials 5 1700541 40 Beruete, Miguel and Irati J\'auregui-L\'opez2020 Advanced Optical Materials 8 3 41 Zundel L and Manjavacas A 2017 ACS Photonics 4 1831 42 Banerjee S, Amith C S, Kumar D, Damarla G and Chowdhury D R 2019 Opt. Commun. 453 124366 43 Wan M L, He J N, Song Y L and Zhou F Q 2015 Phys. Lett. A 379 1791 44 Qiu L, Xiao G, Kong X and Xiong C 2019 Opt. Express 27 21226 45 Guo T J and Christos A 2016 Opt. Lett. 41 5592 46 Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F and Daburro Z 2011 Science 334 333 47 Liu S, Cui T J, Zhang L, et al. 2016 Adv. Sci. 3 1600156 48 Zhang L, Liu S, Li L L and Cui T J 2017 ACS Appl. Mater. Interfaces 9 36447 49 Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Zheng L Xu Z and Zhang A X 2014 J. Phys. D: Appl. Phys. 47 425103 50 Li Y, Zhang J, Qu S, Wang J, Chen H and Xu Z 51 Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A 45 8185 52 Wang L, Liu S, Kong X, Wen Y and Liu X 2019 Electron. Lett. 55 1168 53 Chen P, Ge S J, Duan W, Wei B Y, Cui G X and Hu W 2017 ACS Photonics 4 1333 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|