| ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Synchronized dual-wavelength mode-locked laser in normal dispersion regime |
| Yangrui Shi(史洋瑞)1, Haojing Zhang(张皓景)1,2, Yuxuan Ren(任俞宣)1, Junsong Peng(彭俊松)1,2,†, and Heping Zeng(曾和平)1,2,3 |
1 State Key Laboratory of Precision Spectroscopy, and Hainan Institute, East China Normal University, Shanghai 200062, China; 2 Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China; 3 Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China |
|
|
|
|
Abstract Synchronized dual-wavelength mode-locked laser is investigated numerically and experimentally in the normal dispersion regime. A programmable optical processor is introduced to shape the spectral profile and adjust the net dispersion, which is demonstrated be a convenient and reliable approach to generate dual-color solitons. The time-stretch dispersive Fourier transform and frequency-resolved optical grating techniques are utilized to measure the spectral and temporal characteristics of dual-color solitons, respectively. The numerical results are consistent with experimental results. This work may facilitate the development of filter-based mode-locked laser and the understanding of multi-wavelength soliton dynamics.
|
Received: 28 February 2025
Revised: 17 April 2025
Accepted manuscript online: 07 May 2025
|
|
PACS:
|
42.55.Wd
|
(Fiber lasers)
|
| |
42.65.-k
|
(Nonlinear optics)
|
| |
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
| |
42.65.Tg
|
(Optical solitons; nonlinear guided waves)
|
|
| Fund: Project supported by the Innovation Program for Quantum Science and Technology (Grant No. 2023ZD0301000), the National Natural Science Foundation of China (Grant Nos. 12434018, 62475073, 1243000542, 11621404, 11561121003, 11727812, 61775059, 12074122, 62405090, 62035005, and 11704123), the Natural Science Foundation of Shanghai (Grant No. 23ZR1419000), and China Postdoctoral Science Foundation (Grant Nos. 2023M741188 and 2024T170275). |
Corresponding Authors:
Junsong Pen
E-mail: jspeng@lps.ecnu.edu.cn
|
Cite this article:
Yangrui Shi(史洋瑞), Haojing Zhang(张皓景), Yuxuan Ren(任俞宣), Junsong Peng(彭俊松), and Heping Zeng(曾和平) Synchronized dual-wavelength mode-locked laser in normal dispersion regime 2025 Chin. Phys. B 34 094207
|
[1] Grelu P and Akhmediev N 2012 Nat. Photon. 6 84 [2] Song Y, Shi X, Wu C, Tang D and Zhang H 2019 Appl. Phys. Rev. 6 021313 [3] Kim J and Song Y 2016 Advances in Optics and Photonics 8 465 [4] Han Y, Guo Y, Gao B, Ma C, Zhang R and Zhang H 2020 Progress in Quantum Electronics 71 100264 [5] Mao D, Wang H, Zhang H, Zeng C, Du Y, He Z, Sun Z and Zhao J 2021 Nat. Commun. 12 6712 [6] Zhang H, Mao D, Du Y, Zeng C, Sun Z and Zhao J 2023 Commun. Phys. 6 191 [7] Gao Q, Zhang H, Du Y, Zeng C, Mao D, Grelu P and Zhao J 2025 Laser & Photonics Reviews 19 2400494 [8] Cui Y, Zhang Y, Huang L, Zhang A, Liu Z, Kuang C, Tao C, Chen D, Liu X and Malomed B A 2023 Phys. Rev. Lett. 130 153801 [9] Mo S, Feng Z, Xu S, Zhang W, Chen D, Yang T, Yang C, Li C and Yang Z 2013 Laser Phys. Lett. 10 125107 [10] Ahmad H, Muhammad F D, Pua C H and Thambiratnam K 2014 IEEE J. Select. Top. Quantum Electron. 20 166 [11] Luo Z C, Luo A P and Xu W C 2011 Applied Optics 50 2831 [12] Town G E, Chen L and Smith PWE 2000 IEEE Photon. Technol. Lett. 12 1459 [13] Liu X, Han D, Sun Z, Zeng C, Lu H, Mao D, Cui Y and Wang F 2013 Sci. Rep. 3 2718 [14] Jain A, Chandra N, Anchal A and Kumar K P 2016 Optics & Laser Technology 83 189 [15] Hu G, Mizuguchi T, Zhao X, Minamikawa T, Mizuno T, Yang Y, Li C, Bai M, Zheng Z and Yasui T 2017 Sci. Rep. 7 42082 [16] Ideguchi T, Holzner S, Bernhardt B, Guelachvili G, Picqué N and Hänsch T W 2013 Nature 502 355 [17] Freudiger C W, Yang W, Holtom G R, Peyghambarian N, Xie X S and Kieu K Q 2014 Nat. Photon. 8 153 [18] Zhang F, Gaafar M, Möller C, Stolz W, Koch M and Rahimi-Iman A 2016 IEEE Photon. Technol. Lett. 28 927 [19] Shang Y, Wang P, Li X, Shen M and Xu X 2016 Optik 127 11871 [20] Cui Y, Yao X, Hao X, Yang Q, Chen D, Zhang Y, Liu X, Sun Z and Malomed B A 2024 Laser & Photon. Rev. 18 2300471 [21] Stegeman G I and Segev M 1999 Science 286 1518 [22] HeW, Pang M, Yeh D H, Huang J, Menyuk C R and Russell P S J 2019 Nat. Commun. 10 5756 [23] Gray R, Sekine R, Shen M, Zacharias T, Williams J, Zhou S, Chawlani R, Ledezma L, Englebert N and Marandi A 2025 arXiv: 2501.15381 [physics.optics] [24] Kelly S M J 1992 Electron. Lett. 28 806 [25] Zhang H, Tang D Y, Wu X and Zhao L M 2009 Opt. Express 17 12692 [26] Yang X, Tao J, Lv C, Fu C, Lu B and Bai J 2023 Opt Express 31 37537 [27] Tao J, Fang Y, Song Y, Song P, Hou L, Lu B, Lin Q and Bai J 2022 Opt. Express 30 17465 [28] Guo Z, Liu T, Peng J, Zhu Y, Huang K and Zeng H 2021 Journal of Lightwave Technology 39 3575 [29] Weiner A M 2011 Opt. Commun. 284 3669 [30] Roelens M A F, Frisken S, Bolger J A, Abakoumov D, Baxter G, Poole S and Eggleton B J 2008 Journal of Lightwave Technology 26 73 [31] Peng J and Boscolo S 2016 Sci. Rep. 6 25995 [32] Liu T, Yan M, Guo Z and Zeng H 2022 Results in Physics 36 105464 [33] Zhang Z X, Luo M, Liu J H, Yang Y T, Li T J, Liu M, Luo A P, Xu W C and Luo Z C 2024 Nat. Commun. 15 6148 [34] Han Y, Gao B, Wen H, Ma C, Huo J, Li Y, Zhou L, Li Q, Wu G and Liu L 2024 Light: Science & Applications 13 101 [35] Xue X, Grelu P, Yang B, Wang M, Li S, Zheng X and Zhou B 2023 Light: Science & Applications 12 19 [36] Schröder J, Coen S, Sylvestre T and Eggleton B 2010 Opt. Express 18 22715 [37] Runge A F J, Hudson D D, Tam K K K, de Sterke C M and Blanco- Redondo A 2020 Nat. Photon. 14 492 [38] Goda K and Jalali B 2013 Nat. Photon. 7 102 [39] Boscolo S, Finot C, Karakuzu H and Petropoulos P 2014 Opt. Lett. 39 438 [40] Trebino R and SpringerLink 2000 Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Boston, MA: Springer US) [41] Keusters D, Tan H S, O’Shea P, Zeek E, Trebino R and Warren W 2003 J. Opt. Soc. Am. B 20 2226 [42] Haus H A 2000 IEEE J. Select. Top. Quantum Electron. 6 1173 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|