Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 094207    DOI: 10.1088/1674-1056/add4fe
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Synchronized dual-wavelength mode-locked laser in normal dispersion regime

Yangrui Shi(史洋瑞)1, Haojing Zhang(张皓景)1,2, Yuxuan Ren(任俞宣)1, Junsong Peng(彭俊松)1,2,†, and Heping Zeng(曾和平)1,2,3
1 State Key Laboratory of Precision Spectroscopy, and Hainan Institute, East China Normal University, Shanghai 200062, China;
2 Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China;
3 Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China
Abstract  Synchronized dual-wavelength mode-locked laser is investigated numerically and experimentally in the normal dispersion regime. A programmable optical processor is introduced to shape the spectral profile and adjust the net dispersion, which is demonstrated be a convenient and reliable approach to generate dual-color solitons. The time-stretch dispersive Fourier transform and frequency-resolved optical grating techniques are utilized to measure the spectral and temporal characteristics of dual-color solitons, respectively. The numerical results are consistent with experimental results. This work may facilitate the development of filter-based mode-locked laser and the understanding of multi-wavelength soliton dynamics.
Keywords:  fiber laser      mode locking      dual-wavelength  
Received:  28 February 2025      Revised:  17 April 2025      Accepted manuscript online:  07 May 2025
PACS:  42.55.Wd (Fiber lasers)  
  42.65.-k (Nonlinear optics)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
Fund: Project supported by the Innovation Program for Quantum Science and Technology (Grant No. 2023ZD0301000), the National Natural Science Foundation of China (Grant Nos. 12434018, 62475073, 1243000542, 11621404, 11561121003, 11727812, 61775059, 12074122, 62405090, 62035005, and 11704123), the Natural Science Foundation of Shanghai (Grant No. 23ZR1419000), and China Postdoctoral Science Foundation (Grant Nos. 2023M741188 and 2024T170275).
Corresponding Authors:  Junsong Pen     E-mail:  jspeng@lps.ecnu.edu.cn

Cite this article: 

Yangrui Shi(史洋瑞), Haojing Zhang(张皓景), Yuxuan Ren(任俞宣), Junsong Peng(彭俊松), and Heping Zeng(曾和平) Synchronized dual-wavelength mode-locked laser in normal dispersion regime 2025 Chin. Phys. B 34 094207

[1] Grelu P and Akhmediev N 2012 Nat. Photon. 6 84
[2] Song Y, Shi X, Wu C, Tang D and Zhang H 2019 Appl. Phys. Rev. 6 021313
[3] Kim J and Song Y 2016 Advances in Optics and Photonics 8 465
[4] Han Y, Guo Y, Gao B, Ma C, Zhang R and Zhang H 2020 Progress in Quantum Electronics 71 100264
[5] Mao D, Wang H, Zhang H, Zeng C, Du Y, He Z, Sun Z and Zhao J 2021 Nat. Commun. 12 6712
[6] Zhang H, Mao D, Du Y, Zeng C, Sun Z and Zhao J 2023 Commun. Phys. 6 191
[7] Gao Q, Zhang H, Du Y, Zeng C, Mao D, Grelu P and Zhao J 2025 Laser & Photonics Reviews 19 2400494
[8] Cui Y, Zhang Y, Huang L, Zhang A, Liu Z, Kuang C, Tao C, Chen D, Liu X and Malomed B A 2023 Phys. Rev. Lett. 130 153801
[9] Mo S, Feng Z, Xu S, Zhang W, Chen D, Yang T, Yang C, Li C and Yang Z 2013 Laser Phys. Lett. 10 125107
[10] Ahmad H, Muhammad F D, Pua C H and Thambiratnam K 2014 IEEE J. Select. Top. Quantum Electron. 20 166
[11] Luo Z C, Luo A P and Xu W C 2011 Applied Optics 50 2831
[12] Town G E, Chen L and Smith PWE 2000 IEEE Photon. Technol. Lett. 12 1459
[13] Liu X, Han D, Sun Z, Zeng C, Lu H, Mao D, Cui Y and Wang F 2013 Sci. Rep. 3 2718
[14] Jain A, Chandra N, Anchal A and Kumar K P 2016 Optics & Laser Technology 83 189
[15] Hu G, Mizuguchi T, Zhao X, Minamikawa T, Mizuno T, Yang Y, Li C, Bai M, Zheng Z and Yasui T 2017 Sci. Rep. 7 42082
[16] Ideguchi T, Holzner S, Bernhardt B, Guelachvili G, Picqué N and Hänsch T W 2013 Nature 502 355
[17] Freudiger C W, Yang W, Holtom G R, Peyghambarian N, Xie X S and Kieu K Q 2014 Nat. Photon. 8 153
[18] Zhang F, Gaafar M, Möller C, Stolz W, Koch M and Rahimi-Iman A 2016 IEEE Photon. Technol. Lett. 28 927
[19] Shang Y, Wang P, Li X, Shen M and Xu X 2016 Optik 127 11871
[20] Cui Y, Yao X, Hao X, Yang Q, Chen D, Zhang Y, Liu X, Sun Z and Malomed B A 2024 Laser & Photon. Rev. 18 2300471
[21] Stegeman G I and Segev M 1999 Science 286 1518
[22] HeW, Pang M, Yeh D H, Huang J, Menyuk C R and Russell P S J 2019 Nat. Commun. 10 5756
[23] Gray R, Sekine R, Shen M, Zacharias T, Williams J, Zhou S, Chawlani R, Ledezma L, Englebert N and Marandi A 2025 arXiv: 2501.15381 [physics.optics]
[24] Kelly S M J 1992 Electron. Lett. 28 806
[25] Zhang H, Tang D Y, Wu X and Zhao L M 2009 Opt. Express 17 12692
[26] Yang X, Tao J, Lv C, Fu C, Lu B and Bai J 2023 Opt Express 31 37537
[27] Tao J, Fang Y, Song Y, Song P, Hou L, Lu B, Lin Q and Bai J 2022 Opt. Express 30 17465
[28] Guo Z, Liu T, Peng J, Zhu Y, Huang K and Zeng H 2021 Journal of Lightwave Technology 39 3575
[29] Weiner A M 2011 Opt. Commun. 284 3669
[30] Roelens M A F, Frisken S, Bolger J A, Abakoumov D, Baxter G, Poole S and Eggleton B J 2008 Journal of Lightwave Technology 26 73
[31] Peng J and Boscolo S 2016 Sci. Rep. 6 25995
[32] Liu T, Yan M, Guo Z and Zeng H 2022 Results in Physics 36 105464
[33] Zhang Z X, Luo M, Liu J H, Yang Y T, Li T J, Liu M, Luo A P, Xu W C and Luo Z C 2024 Nat. Commun. 15 6148
[34] Han Y, Gao B, Wen H, Ma C, Huo J, Li Y, Zhou L, Li Q, Wu G and Liu L 2024 Light: Science & Applications 13 101
[35] Xue X, Grelu P, Yang B, Wang M, Li S, Zheng X and Zhou B 2023 Light: Science & Applications 12 19
[36] Schröder J, Coen S, Sylvestre T and Eggleton B 2010 Opt. Express 18 22715
[37] Runge A F J, Hudson D D, Tam K K K, de Sterke C M and Blanco- Redondo A 2020 Nat. Photon. 14 492
[38] Goda K and Jalali B 2013 Nat. Photon. 7 102
[39] Boscolo S, Finot C, Karakuzu H and Petropoulos P 2014 Opt. Lett. 39 438
[40] Trebino R and SpringerLink 2000 Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Boston, MA: Springer US)
[41] Keusters D, Tan H S, O’Shea P, Zeek E, Trebino R and Warren W 2003 J. Opt. Soc. Am. B 20 2226
[42] Haus H A 2000 IEEE J. Select. Top. Quantum Electron. 6 1173
[1] TaS2-based saturable absorbers for Q-switched fiber laser applications
Qinghua Wang(汪情华), Hao Sun(孙昊), Chenhao Lu(鲁晨浩), Huiran Yang(杨慧苒), and Lu Li(李璐). Chin. Phys. B, 2025, 34(7): 074209.
[2] High-efficiency Yb3+-doped fiber laser with highly optical nonlinear Bi4Br4-based saturable absorber
Mengyuan Liu(刘梦媛), Yechao Han(韩烨超), Qi Liu(刘齐), Hao Teng(滕浩), Xiwei Huang(黄玺玮), Xiaowei Xing(邢笑伟), Xiangyu Qiao(乔向宇), Guojing Hu(胡国静), Xiao Lin(林晓), Haitao Yang(杨海涛), Zhiyi Wei(魏志义), and Wenjun Liu(刘文军). Chin. Phys. B, 2025, 34(6): 064202.
[3] Multi-wavelength and transversely mode-switchable fiber laser based on ring-core fiber Bragg grating
Ya-Jun Jiang(姜亚军), Yu-Hui Su(苏宇辉), Jia-Xin Gao(高嘉欣), Feng Zhou(周峰), Li-Qin Cheng(程丽琴), Kang-Wei Pan(潘康伟), Bin-Chuan Sun(孙镔传), Li Shen(申力), De-Xing Yang(杨德兴), and Jian-Lin Zhao(赵建林). Chin. Phys. B, 2025, 34(6): 064203.
[4] Pure-quartic soliton molecules in normal fourth-order dispersion regimes based on spectral filtering effect
Han-Yang Shen(申翰阳), Rui-Bo Lan(蓝睿博), Hong-Bin Hu(胡洪彬), Yang Li(李阳), Rui Zhou(周瑞), and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2025, 34(3): 034203.
[5] Dissipative soliton resonance within different dispersion regimes in a single mode-locked laser
Zhetao Zhao(赵哲韬), Qinke Shu(舒沁珂), Ziyi Xie(解梓怡), Yuxuan Ren(任俞宣), Ying Zhang(张颖), Bo Yuan(袁博), Chunbo Zhao(赵春勃), Junsong Peng(彭俊松), and Heping Zeng(曾和平). Chin. Phys. B, 2024, 33(7): 074208.
[6] Internal phase control of fiber laser array based on photodetector array
Kai-Kai Jin(靳凯凯), Jin-Hu Long(龙金虎), Hong-Xiang Chang(常洪祥), Rong-Tao Su(粟荣涛), Jia-Yi Zhang(张嘉怡), Si-Yu Chen(陈思雨), Yan-Xing Ma(马阎星), and Pu Zhou(周朴). Chin. Phys. B, 2024, 33(7): 074201.
[7] Wavelength-interval switchable Brillouin-Raman random fiber laser through Brillouin pump manipulation
Yang Li(李阳), En-Ming Xu(徐恩明), Rui-Jia Chen(陈睿佳), Yu-Gang Shee, and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2024, 33(7): 074209.
[8] Dual-wavelength pumped latticed Fermi-Pasta-Ulam recurrences in nonlinear Schrödinger equation
Qian Zhang(张倩), Xiankun Yao(姚献坤), and Heng Dong(董恒). Chin. Phys. B, 2024, 33(3): 030502.
[9] On the generation of high-quality Nyquist pulses in mode-locked fiber lasers
Yuxuan Ren(任俞宣), Jinman Ge(葛锦蔓), Xiaojun Li(李小军), Junsong Peng(彭俊松), and Heping Zeng(曾和平). Chin. Phys. B, 2024, 33(3): 034210.
[10] Broadband bidirectional Brillouin-Raman random fiber laser with ultra-narrow linewidth
Qian Yang(杨茜), Yang Li(李阳), Hui Zou(邹辉), Jie Mei(梅杰), En-Ming Xu(徐恩明), and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2024, 33(2): 024206.
[11] Single-frequency linearly polarized Q-switched fiber laser based on Nb2GeTe4 saturable absorber
Si-Yu Chen(陈思雨), Hai-Qin Deng(邓海芹), Wan-Ru Zhang(张万儒), Yong-Ping Dai(戴永平), Tao Wang(王涛), Qiang Yu(俞强), Can Li(李灿), Man Jiang(姜曼), Rong-Tao Su(粟荣涛), Jian Wu(吴坚), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(7): 074203.
[12] Antimonene-based saturable absorber for a soliton mode-locked and Q-switched fiber laser in the 2 μm wavelength region
H Ahmad, B Nizamani, M Z Samion, N Yusoff, and M F Ismail. Chin. Phys. B, 2023, 32(6): 064205.
[13] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[14] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[15] Comprehensive analysis of pure-quartic soliton dynamics in a passively mode-locked fiber laser
Lie Liu(刘列), Ying Han(韩颖), Jiayu Huo(霍佳雨), Honglin Wen(文红琳), Ge Wu(吴戈), and Bo Gao(高博). Chin. Phys. B, 2023, 32(11): 114209.
No Suggested Reading articles found!