| ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Entropy evolution law of a general linear state for diffusion noise |
| Yingyu Zhang(张映玉)1,† and Yixing Wang(王依兴)2,‡ |
1 School of Information Science and Technology, Hainan Normal University, Haikou 571127, China; 2 School of Automation and Electrical Engineering, Linyi University, Linyi 276000, China |
|
|
|
|
Abstract Based on the Kraus operator-sum representation of the analytical solution of the diffusion equation, we obtain the evolution of a general linear state in the diffusion channel. Also, we study the quantum statistical properties of the initial general linear state and its von-Neumann entropy evolution in the diffusion channel, especially find that the entropy evolution is influenced by the diffusion noise and the thermal parameter but without the displacement.
|
Received: 31 December 2024
Revised: 28 April 2025
Accepted manuscript online: 07 May 2025
|
|
PACS:
|
42.50.-p
|
(Quantum optics)
|
| |
03.65.-w
|
(Quantum mechanics)
|
| |
05.30.-d
|
(Quantum statistical mechanics)
|
|
| Fund: Project supported by the Natural Science Foundation of Hainan Province, China (Grant Nos. 621RC741 and 622RC668). |
Corresponding Authors:
Yingyu Zhang, Yixing Wang
E-mail: zhyy8070@126.com;wangyixing@lyu.edu.cn
|
Cite this article:
Yingyu Zhang(张映玉) and Yixing Wang(王依兴) Entropy evolution law of a general linear state for diffusion noise 2025 Chin. Phys. B 34 094206
|
[1] Saleh B E A and Teich M C 1987 Phys. Rev. Lett. 58 2656 [2] Weiss G H and Maradudin A A 1962 J. Math. Phys. 3 771 [3] Aronson R and Corngold N 1999 J. Opt. Soc. Am. A 16 1066 [4] Wu W F, Fang Y and Fu P 2024 Chin. Phys. B 33 094202 [5] Yu H J and Fan H Y 2022 Chin. Phys. B 31 020301 [6] Li G X, Tan H T,Wu S P and Huang G M 2006 Phys. Rev. A 74 025801 [7] Fan H Y, Lou S Y, Pan X Y and Hu L Y 2014 Sci. China Phys. Mech. Astron. 57 1649 [8] Fan H Y, Hu L Y and Fan Y 2006 Ann. Phys. 321 480 [9] Fan H Y 2004 Int. J. Mod. Phys. B 18 1387 [10] Meng X G, Wang J S, Liang B L and Han C X 2018 Front. Phys. 13 130322 [11] Meng X G, Wang J S, Zhang X Y, Yang Z S, Liang B L and Zhang Z T 2020 Ann. Phys. (Berlin) 532 2000219 [12] Meng X G, Li K C, Wang J S, Zhang X Y, Zhang Z T, Yang Z S and Liang B L 2020 Ann. Phys. (Berlin) 532 1900585 [13] Fan H Y 1991 Phys. Lett. A 161 1 [14] Fan H Y 2003 J. Opt. B: Quantum Seciclass. Opt. 5 R147 [15] Kano Y 1974 J. Phys. Soc. Jpn. 36 39 [16] Vaccaro J 1995 Phys. Rev. A 52 3474 [17] Guo Y, Zhang X, Du Q P, Yang Z S and Li J P 2023 J. Liaocheng Univ. (Nat. Sci. Ed.) 36 39 [18] Chen F and Fan H Y 2013 Ann. Phys. 334 272 [19] Meng X G, Liang B L, Liu J M and Zhou X C 2025 Front. Phys. 20 022205 [20] Zhang J D and Wang S 2024 J. Liaocheng Univ. (Nat. Sci. Ed.) 37 23 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|