| INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Phase-field modeling of effect of Ni on formation and phase transformation of Cu-rich phase in Fe-Cu-Ni alloys |
| Ming-Guang Wei(位明光)1, Zhong-Wen Zhang(张中文)1, Min Cui(崔敏)2, Yuan-Bin Zhang(张元彬)2, and Tong-Guang Zhai(翟同广)2,† |
1 School of Physics Science and Technology, Guangxi University, Nanning 530004, China; 2 School of Materials Science and Engineering, Shandong Jianzhu University, Jinan 250101, China |
|
|
|
|
Abstract A phase-field model integrated with the thermodynamic databases was constructed to investigate the impact of Ni content on the precipitation kinetics and phase transformation of the Cu-rich phase in Fe-Cu-Ni alloy at 773 K. The results demonstrated that the Cu core-Ni shell structures form via the decomposition of Cu-Ni co-clusters, which is consistent with previous experimental results. As the Ni content increases, both the volume fraction and number density of Cu-rich precipitates increase, while their size decreases. With the increase in Ni content, the transformation from $\alpha $ Cu to 9R Cu is accelerated, which is the opposite to the result of increasing Mn content. Magnetic energy can increase the nucleation rate of the Cu-rich phase, but it does not affect the phase transformation driving force required for its crystal structure transformation.
|
Received: 04 March 2025
Revised: 28 April 2025
Accepted manuscript online: 07 May 2025
|
|
PACS:
|
81.10.Jt
|
(Growth from solid phases (including multiphase diffusion and recrystallization))
|
| |
61.50.Ah
|
(Theory of crystal structure, crystal symmetry; calculations and modeling)
|
| |
64.70.kd
|
(Metals and alloys)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51871086). |
Corresponding Authors:
Tong-Guang Zhai
E-mail: tongguang_zhai@yahoo.com
|
Cite this article:
Ming-Guang Wei(位明光), Zhong-Wen Zhang(张中文), Min Cui(崔敏), Yuan-Bin Zhang(张元彬), and Tong-Guang Zhai(翟同广) Phase-field modeling of effect of Ni on formation and phase transformation of Cu-rich phase in Fe-Cu-Ni alloys 2025 Chin. Phys. B 34 088103
|
[1] Jiang M, Han Y, Sun J, Zu G, ZhuW, Zhao Y, Chen H and Ran X 2022 Mater. Design 221 110977 [2] Isheim D, Kolli R P, Fine M E and Seidman D N 2006 Scripta Mater. 55 35 [3] Konstantinović M J, Uytdenhouwen I, Bonny G, Castin N, Malerba L and Efsing P 2019 Acta Mater. 179 183 [4] Jiao Z B, Luan J H, Zhang Z W, Miller M K, Ma W B and Liu C T 2013 Acta Mater. 61 5996 [5] Dhua S K, Mukerjee D and Sarma D S 2001 Metall. Mater. Trans. A 32 2259 [6] Jiang J, Xu D, Xi T Shahzad M B, Khan M S, Zhao J, Fan X, Yang C, Gu T and Yang K 2016 Corros. Sci. 113 46 [7] Xi T, Shahzad M B, Xu D, Zhao J, Yang C, Qi M and Yang K 2016 Mater. Sci. Eng. A-Struct. 675 243 [8] Kapoor M, Isheim D, Vaynman S, FineME and Chung Y W 2016 Acta Mater. 104 166 [9] Wang H, Gao X, Chen S, Li Y,Wu Z and Ren H 2020 J. Alloys Compd. 846 156386 [10] Jiang M, Han Y, Chen X, Zu G, Zhu W and Ran X 2022 J. Mater. Sci. Technol. 121 93 [11] Worrall G M, Buswell J T, English C A, Hetherington M G and Smith G D W 1987 J. Nucl. Mater. 148 107 [12] Holzer I and Kozeschnik E 2010 Mat. Sci. Eng. A-Struct. 527 3546 [13] Nizinkovskyi R, Halle T and Krüger M 2022 J. Nucl. Mater. 566 153764 [14] Sun H, Lv W, Yang Y, Li D, Yan L, Pang X, He Y and Gao K 2023 Acta Mater. 246 118722 [15] Han G, Xie Z J, Li Z Y, Lei B, Shang C J and Misra R D K 2017 Mater. Design 135 92 [16] Othen P J, Jenkins M L and Smith G D W 1994 Phil. Mag. 70 1 [17] Monzen R, Iguchi M and Jenkins M L 2000 Phil. Mag. Lett. 80 137 [18] Vaynman S, Isheim D, Prakash Kolli R, Bhat S P, Seidman D N and Fine M E 2008 Metall. Mater. Trans. A 39 363 [19] Wen Y R, Hirata A, Zhang Z W, Fujita T, Liu C T, Jiang J H and Chen M W 2013 Acta Mater. 61 2133 [20] Zhang C, Enomoto M, Yamashita T and Sano N 2004 Metall. Mater. Trans. A 35 1263 [21] Maury F, Lorenzelli N and De Novion C H 1991 J. Nucl. Mater. 183 217 [22] Osamura K, Okuda H, Asano K, Furusaka M, Kishida K, Kurosawa F and Uemori R 1994 ISIJ Int. 34 346 [23] Isheim D, GaglianoMS, FineME and Seidman D N 2006 Acta Mater. 54 841 [24] Kolli R P, Mao Z, Seidman D N and Keane D T 2007 Appl. Phys. Lett. 91 241903 [25] Kolli R P and Seidman D N 2008 Acta Mater. 56 2073 [26] Kapoor M, Isheim D, Ghosh G, Vaynman S, Fine M E and Chung YW 2014 Acta Mater. 73 56 [27] Gorbatov O I, Gornostyrev Y N, Korzhavyi P A and Ruban A V 2015 Scripta Mater. 102 11 [28] Vincent E, Becquart C S and Domain C 2006 J. Nucl. Mater. 351 88 [29] Li T, Xiong X Y, Shen Q, Wang X J, Li J B and Liu W Q 2019 Mater. Res. Express 6 106510 [30] Wang Z, Du X, Li T, Sun K, Tong X, Li M, Liu R, Liu Y and Chen D 2022 J. Nucl. Mater. 562 153601 [31] Wang K, Wei M, Liao Z, Jin S, Wan B, Lei Z and Li W 2023 J. Alloys Compd. 952 170052 [32] Wei M, Zhai T,Wang Y, Zhang Z,Wang K and Zhang C 2024 J. Mater. Res. Technol. 31 2618 [33] Wei M, Zhai T and Wang K 2024 J. Mater. Res. Technol. 33 8983 [34] Chen Z H, Sheng J, Liu Y, Shi X M, Huang H B, Xu K, Wang C Y, Wu S, Sun B, Liu H F and Song H F 2024 Chin. Phys. B 33 048201 [35] Koyama T and Onodera H 2005 Mater. Trans. 46 1187 [36] Koyama T, Hashimoto K and Onodera H 2006 Mater. Trans. 47 2765 [37] Biner S B, Rao W and Zhang Y 2016 J. Nucl. Mater. 468 9 [38] Zhu J, Zhang T, Yang Y and Liu C T 2019 Acta Mater. 166 560 [39] Li B, Zhang L, Li C, Li Q, Chen J, Shu G, Weng Y, Xu B, Hu S and Liu W 2018 J. Nucl. Mater. 507 59 [40] Sun Y, Zhao Y, Zhao B, Guo Z, Tian X, Yang W and Hou H 2020 Calphad 69 101759 [41] Wei M, Zhai T, Xu Y, Tu Y and Han H 2025 J. Mater. Res. Technol. 35 1971 [42] Zhao Y, Sun Y and Hou H 2022 Prog. Nat. Sci. 32 358 [43] Zhao Y 2022 J. Mater. Res. Technol. 21 546 [44] Dinsdale A T 1991 Calphad 15 317 [45] Allen S M and Cahn J W 1972 Acta Mater. 20 423 [46] Cahn J W and Hilliard J E 1958 J. Chem. Phys. 28 258 [47] Li Y S, Zhu H, Zhang L and Cheng X L 2012 J. Nucl. Mater. 429 13 [48] Jiao Z B, Luan J H, Miller M K, Yu C Y and Liu C T 2015 Acta Mater. 84 283 [49] Zhang C and Enomoto M 2006 Acta Mater. 54 4183 [50] Seko A, Nishitani S R, Tanaka I, Adachi H and Fujita E F 2004 Calphad 28 173 [51] Shen Q, Xiong X Y, Li T, Chen H, Cheng Y M and LiuWQ 2018 Mat. Sci. Eng. A-Struct. 723 279 [52] Kolli R P and Seidman D N 2008 Acta Mater. 56 2073 [53] Sun Y Y, Zhao Y H, Zhao B J, Yang W K, Li X L and Hou H 2019 J. Mater. Sci. 54 11263 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|