|
Special Issue:
SPECIAL TOPIC — Structures and properties of materials under high pressure
|
| SPECIAL TOPIC — Structures and properties of materials under high pressure |
Prev
Next
|
|
|
Pressure-induced metallization and Lifshitz transition in quasi-one-dimensional TiSe3 single crystal |
| Zhenhai Yu(于振海)1,†, Yunguan Ye(叶运观)1,†, Pengtao Yang(杨芃焘)2,†, Yiming Wang(王弈铭)3,†, Liucheng Chen(陈刘城)2, Chenglin Li(李承霖)2, Jian Yuan(袁健)1, Ziyi Liu(刘子儀)2, Zhiwei Shen(申志伟)4, Shaojie Wang(王邵杰)4, Mingtao Li(李明涛)3, Chaoyang Chu(楚朝阳)1, Xia Wang(王霞)5, Jun Li(李俊)2, Lin Wang(王霖)4,‡, Wenge Yang(杨文革)3,§, and Yanfeng Guo(郭艳峰)1,6,¶ |
1 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; 2 Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China; 4 Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China; 5 Analytical Instrumentation Center, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; 6 ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China |
|
|
|
|
Abstract The transition metal trichalcogenides (TMTs) with quasi-one-dimensional (quasi-1D) layered crystal structure represent a unique platform to explore intriguing physical properties. Herein, we report the successful growth of a new TMT TiSe$_{3}$ single crystal by using a high-pressure and high-temperature technique. The crystal structure of TiSe$_{3}$ was determined by measuring the single-crystal x-ray diffraction and selected area electron diffraction. The 1D chain-like structure along the $b$-axis is formed by the TiSe$_{6}$ prisms which share their tops and bottoms with each other. TiSe$_{3}$ is a narrow band gap semiconductor with electron-type carriers under ambient conditions identified by the electrical and Hall effect measurements. It exhibits a pressure-induced semiconductor-to-metal transition around 4 GPa. As the pressure further increases to $\sim 6 $ GPa, a pressure-induced Lifshitz transition occurs, as indicated by the electrical transport measurements, high-pressure crystal structure characterizations, and electronic band structure calculations.
|
Received: 26 February 2025
Revised: 01 April 2025
Accepted manuscript online: 21 April 2025
|
|
PACS:
|
81.10.-h
|
(Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
|
| |
61.50.Ah
|
(Theory of crystal structure, crystal symmetry; calculations and modeling)
|
| |
68.65.-k
|
(Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)
|
| |
61.50.Ks
|
(Crystallographic aspects of phase transformations; pressure effects)
|
|
| Fund: The authors acknowledge the National Key R&D Program of China (Grant Nos. 2023YFA1406100 and 2024YFA1400066). Y. Guo acknowledges the Open Research Fund of Beijing National Laboratory for Condensed Matter Physics (Grant No. 2023BNLCMPKF002). L. Wang was mainly supported by the National Natural Science Foundation of China (Grant Nos. 52288102 and 52090020) and the S&T Program of Hebei (Grant No. 225A1102D). Z. Yu acknowledges the Open Projects from the State Key Laboratory of Metastable Materials Science and Technology, Yanshan University (Grant No. 202301). |
Corresponding Authors:
Lin Wang, Wenge Yang, Yanfeng Guo
E-mail: linwang@ysu.edu.cn;yangwg@hpstar.ac.cn;guoyf@shanghaitech.edu.cn
|
Cite this article:
Zhenhai Yu(于振海), Yunguan Ye(叶运观), Pengtao Yang(杨芃焘), Yiming Wang(王弈铭), Liucheng Chen(陈刘城), Chenglin Li(李承霖), Jian Yuan(袁健), Ziyi Liu(刘子儀), Zhiwei Shen(申志伟), Shaojie Wang(王邵杰), Mingtao Li(李明涛), Chaoyang Chu(楚朝阳), Xia Wang(王霞), Jun Li(李俊), Lin Wang(王霖), Wenge Yang(杨文革), and Yanfeng Guo(郭艳峰) Pressure-induced metallization and Lifshitz transition in quasi-one-dimensional TiSe3 single crystal 2025 Chin. Phys. B 34 088102
|
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [2] Koppens F H L, Mueller T, Avouris Ph, Ferrari A C, Vitiello M S and Polini M 2014 Nat. Nanotechnol. 9 780 [3] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033 [4] Xu X D, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343 [5] Mak K F and Shan J 2016 Nat. Photonics 10 216 [6] Island J O, Molina-Mendoza A J, Barawi M, Biele R, Flores E, Clamagirand J M, Ares J R, Sánchez C, van der Zant H S J, Agosta R D, Ferrer I J and Castellanos-Gomez A 2017 2D Mater. 4 022003 [7] Chen M D, Li L, Xu M Z, Li W W, Zheng L and Wang X W 2023 Research 6 0066 [8] Grønvold F, Langmyhr F J and Stjernström N E 1961 Acta Chem. Scand. 15 1949 [9] Hirota T, Ueda Y and Kosuge K 1988 Mater. Res. Bull. 23 1641 [10] Abdulsalam M and Joubert D P 2015 Eur. Phys. J. B 88 177 [11] Yang M X, Cao B H, Chen J J, Liang M, Sun Y M, Duan D F and Tian F B 2023 Phys. Lett. A 491 129209 [12] Merrill L 1977 J. Phys. Chem. Ref. Data 6 1205 [13] Merrill L 1982 J. Phys. Chem. Ref. Data 11 1005 [14] Liu X L, Yu Z H, Liang Q F, Zhou C Y, Wang H Y, Zhao J G, Wang X, Yu N, Zou Z Q and Guo Y F 2020 Chem. Mater. 32 8781 [15] Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K and Puschmann H 2009 J. Appl. Crystallogr. 42 339 [16] Sheldrick G M 2015 Acta Crystallogr. A 71 3 [17] Sheldrick G M 2015 Acta Crystallogr. C 71 3 [18] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673 [19] Larson A C and Von Dreele R B 2000 General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748 [20] Toby B H 2001 J. Appl. Cryst. 34 210 [21] Thomasson J, Ayache C, Spain I L and Villedieu M 1990 J. Appl. Phys. 68 5933 [22] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864 [23] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 [24] Blochl P E 1994 Phys. Rev. B 50 17953 [25] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [26] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [27] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 [28] Grimme S, Antony J, Ehrlich S and Krieg S 2010 J. Chem. Phys. 132 154104 [29] Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 J. Chem. Phys. 125 224106 [30] Jellinek F, Pollak R A and Shafer M W 1974 Mater. Res. Bull. 9 845 [31] Jin Y D, Li X X and Yang J L 2015 Phys. Chem. Chem. Phys 17 18665 [32] Saeed Y, Kachmar A and Carignano M A 2017 J. Phys. Chem. C 121 1399 [33] Bremholm M, Hor Y S and Cava R J 2011 Solid State Sci. 13 38 [34] Srivastava S K and Avasthi B N 1992 J. Mater. Sci. 27 3693 [35] Osada K, Bae S, Tanaka M, Raebiger H, Shudo K and Suzuki T 2016 J. Phys. Chem. C 120 4653 [36] Khatibi A, Godiksen R H, Basuvalingam S B, Pellegrino D, Bol A A, Shokri B and Curto A G 2019 2D Mater. 7 015022 [37] An C, Lu P C, Chen X L, Zhou Y H, Wu J F, Zhou Y, Park C, Gu C C, Zhang B W, Yuan Y F, Sun J and Yang Z R 2017 Phys. Rev. B 96 134110 [38] Zhong X, Zhang M, Yang L, Qu X, Yang L, Yang J and Liu H 2019 Comput. Mater. Sci. 158 192 [39] Li Z X, Chen X J, Liu X L, Yu Z H, Su N, Liu Z Y, Xia W, Jiao J L, Zhou C Y, Zhang L L, Dong Z H,Wang X, Yu N, Zou Z Q, Ma J, Cheng J G, Zhong Z C and Guo Y F 2023 J. Alloys Compd. 937 168337 [40] Sinchenko A A, Lejay P, Leynaud O and Monceau P 2016 Phys. Rev. B 93 235141 [41] Yao M L, Liu W S, Chen X, Ren Z S, Wilson S, Ren Z F and Opeil C P 2017 J. Materiomics 3 150 [42] Polian A, Gauthier M, Souza S M, Trichês D M, Cardoso De Lima J and Grandi T A 2011 Phys. Rev. B 83 113106 [43] Yu Z H, Wang L, Hu Q Y, Zhao J G, Yan S, Yang K, Sinogeikin S, Gu G and Mao H 2015 Sci. Rep. 5 15939 [44] Krottenmüller M, Vöst M, Unglert N, Ebad-Allah J, Eickerling G, Volkmer D, Hu J, Zhu Y L, Mao Z Q, Scherer W and Kuntscher C A 2020 Phys. Rev. B 101 081108(R) [45] Ohmura A, Higuchi Y, Ochiai T, Kanou M, Ishikawa F, Nakano S, Nakayama A, Yamada Y and Sasagawa T 2017 Phys. Rev. B 95 125203 [46] Birch F 1947 Phys. Rev. 71 809 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|