Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 046401    DOI: 10.1088/1674-1056/ad0ec6
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

In situ observation of the phase transformation kinetics of bismuth during shock release

Jiangtao Li(李江涛)1,2, Qiannan Wang(王倩男)1,2, Liang Xu(徐亮)1,2, Lei Liu(柳雷)1, Hang Zhang(张航)1,2, Sota Takagi3,4, Kouhei Ichiyanagi4, Ryo Fukaya4, Shunsuke Nozawa4, and Jianbo Hu(胡建波)1,2,†
1 Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China;
2 State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China;
3 Japan Society for the Promotion of Science, Tokyo, 102-0083, Japan;
4 Institute of Materials Structure Science, High Energy Accelerator Research Organization(KEK), Ibaraki, 305-8572, Japan
Abstract  A time-resolved x-ray diffraction technique is employed to monitor the structural transformation of laser-shocked bismuth. Results reveal a retarded transformation from the shock-induced Bi-V phase to a metastable Bi-IV phase during the shock release, instead of the thermodynamically stable Bi-III phase. The emergence of the metastable Bi-IV phase is understood by the competitive interplay between two transformation pathways towards the Bi-IV and Bi-III, respectively. The former is more rapid than the latter because the Bi-V to B-IV transformation is driven by interaction between the closest atoms while the Bi-V to B-III transformation requires interaction between the second-closest atoms. The nucleation time for the Bi-V to Bi-IV transformation is determined to be 5.1±0.9 ns according to a classical nucleation model. This observation demonstrates the importance of the formation of the transient metastable phases, which can change the phase transformation pathway in a dynamic process.
Keywords:  phase transformation      time-resolved x-ray diffraction (XRD)      bismuth      metastable phase      nonequilibrium phase diagram  
Received:  11 September 2023      Revised:  18 November 2023      Accepted manuscript online:  22 November 2023
PACS:  64.70.K-  
  64.60.My (Metastable phases)  
  62.50.Ef (Shock wave effects in solids and liquids)  
Fund: This study was supported by the National Natural Science Foundation of China (Grant No. 12072331), the Science Challenge Project (Grant No. TZ2018001), the Japan Society for the Promotion of Science (Grant Nos. 17H04820 and 21H01677) and the Foundation of the United Laboratory of High-Pressure Physics and Earthquake Science, and was performed under the approval of the Photon Factory Program Advisory Committee (Proposal Nos. 2016S2-006 and 2020G680).
Corresponding Authors:  Jianbo Hu     E-mail:  jianbo.hu@caep.cn

Cite this article: 

Jiangtao Li(李江涛), Qiannan Wang(王倩男), Liang Xu(徐亮), Lei Liu(柳雷), Hang Zhang(张航), Sota Takagi, Kouhei Ichiyanagi, Ryo Fukaya, Shunsuke Nozawa, and Jianbo Hu(胡建波) In situ observation of the phase transformation kinetics of bismuth during shock release 2024 Chin. Phys. B 33 046401

[1] Kraus D, Ravasio A, Gauthier M, et al. 2016 Nat. Commun. 7 10970
[2] Turneaure S J, Sharma S M, Volz T J, Winey J M and Gupta Y M 2017 Sci. Adv. 3 eaao3561
[3] Knudson M D, Desjarlais M P, Becker A, Lemke R W, Cochrane K R, Savage M E, Bliss D E, Mattsson T R and Redmer R 2015 Science 348 1455
[4] Celliers P M, Millot M, Brygoo S, McWilliams R S, Fratanduono D E, Rygg J R, Goncharov A F, Loubeyre P, Eggert J H, Peterson J L, Meezan N B, Le Pape S, Collins G W, Jeanloz R and Hemley R J 2018 Science 361 677
[5] Hartley N J, Zhang C, Duan X, Huang L G, Jiang S, Li Y, Yang L, Pelka A, Wang Z, Yang J and Kraus D 2020 Matter Radiat. Extrem. 5 028401
[6] McWilliams R S, Spaulding D K, Eggert J H, Celliers P M, Hicks D G, Smith R F, Collins G W and Jeanloz R 2012 Science 338 1330
[7] Eremets M I, Shimizu K, Kobayashi T C and Amaya K 1998 Science 281 1333
[8] Boettger J C and Wallace D C 1997 Phys. Rev. B 55 2840
[9] Hwang H, Galtier E, Cynn H, et al. 2020 Sci. Adv. 6 eaaz5132
[10] Turneaure S J, Sharma S M and Gupta Y M 2018 Phys. Rev. Lett. 121 135701
[11] Swinburne T D, Glavicic M G, Rahman K M, Jones N G, Coakley J, Eakins D E, White T G, Tong V, Milathianaki D, Williams G J, Rugg D, Sutton A P and Dye D 2016 Phys. Rev. B 93 144119
[12] Bastea M, Bastea S and Becker R 2009 Appl. Phys. Lett. 95 241911
[13] Jensen B J, Gray III G T and Hixson R S 2009 J. Appl. Phys. 105 103502
[14] Barker L M and Hollenbach R E 1974 J. Appl. Phys. 45 4872
[15] Kalita P, Specht P, Root S, Sinclair N, Schuman A, White M, Cornelius A L, Smith J and Sinogeikin S 2017 Phys. Rev. Lett. 119 255701
[16] Gorman M G, Coleman A L, Briggs R, McWilliams R S, McGonegle D, Bolme C A, Gleason A E, Galtier E, Lee H J, Granados E, Sliwa M, Sanloup C, Rothman S, Fratanduono D E, Smith R F, Collins G W, Eggert J H, Wark J S and McMahon M I 2018 Sci. Rep. 8 16927
[17] Smith R F, Eggert J H, Saculla M D, Jankowski A F, Bastea M, Hicks D G and Collins G W 2008 Phys. Rev. Lett. 101 065701
[18] Principi E, Minicucci M, Di Cicco A, Trapananti A, De Panfilis S and Poloni R 2006 Phys. Rev. B 74 064101
[19] Bastea M, Bastea S, Emig J A, Springer P T and Reisman D B 2005 Phys. Rev. B 71 180101
[20] Jenei Z, Liermann H P, Husband R, Méndez A S J, Pennicard D, Marquardt H, O'Bannon E F, Pakhomova A, Konopkova Z, Glazyrin K, Wendt M, Wenz S, McBride E E, Morgenroth W, Winkler B, Rothkirch A, Hanfland M and Evans W J 2019 Rev. Sci. Instrum. 90 065114
[21] Akahama Y, Kawamura H and Singh A K 2002 J. Appl. Phys. 92 5892
[22] McMahon M I, Degtyareva O and Nelmes R J 2000 Phys. Rev. Lett. 85 4896
[23] Degtyareva O, McMahon M I and Nelmes R J 2004 High Press. Res. 24 319
[24] Häussermann U, Söderberg K and Norrestam R 2002 J. Am. Chem. Soc. 124 15359
[25] Chen J H, Iwasaki H and Kikegawa T 1997 J. Phys. Chem. Solids 58 247
[26] Cannon J F 1974 J. Phys. Chem. Ref. Data 3 781
[27] Klement W, Jayaraman A and Kennedy G C 1963 Phys. Rev. 131 632
[28] Pépin C M, Sollier A, Marizy A, Occelli F, Sander M, Torchio R and Loubeyre P 2019 Phys. Rev. B 100 060101
[29] Gorman M G, Coleman A L, Briggs R, McWilliams R S, Hermann A, McGonegle D, Bolme C A, Gleason A E, Galtier E, Lee H J, Granados E, McBride E E, Rothman S, Fratanduono D E, Smith R F, Collins G W, Eggert J H, Wark J S and McMahon M I 2019 Appl. Phys. Lett. 114 120601
[30] Husband R J, O'Bannon E F, Liermann H P, Lipp M J, Méndez A S J, Kon^opková Z, McBride E E, Evans W J and Jenei Z 2021 Sci. Rep. 11 14859
[31] Hu J, Ichiyanagi K, Doki T, Goto A, Eda T, Norimatsu K, Harada S, Horiuchi D, Kabasawa Y, Hayashi S, Uozumi S, Kawai N, Nozawa S, Sato T, Adachi S and Nakamura K G 2013 Appl. Phys. Lett. 103 161904
[32] Takagi S, Ichiyanagi K, Kyono A, Nozawa S, Kawai N, Fukaya R, Funamori N and Adachi S 2020 J. Synchrotron Rad. 27 371
[33] Weng J, Wang X, Ma Y, Tan H, Cai L, Li J and Liu C 2008 Rev. Sci. Instru. 79 113101
[34] Nissim N, Greenberg E, Werdiger M, Horowitz Y, Bakshi L, Ferber Y, Glam B, Fedotov-Gefen A, Perelmutter L and Eliezer S 2021 Matter Radiat. Extrem. 6 046902
[35] Chen X H, Zeng X L, Fan D, Liu Q C, Bie B X, Zhou X M and Luo S N 2014 Rev. Sci. Instrum. 85 026106
[36] Fratanduono D E, Boehly T R, Barrios M A, Meyerhofer D D, Eggert J H, Smith R F, Hicks D G, Celliers P M, Braun D G and Collins G W 2011 J. Appl. Phys. 109 123521
[37] LaLone B M, Fat'yanov O V, Asay J R and Gupta Y M 2008 J. Appl. Phys. 103 093505
[38] Ramis R, Schmalz R and Meyer-Ter-Vehn J 1988 Comput. Phys. Comm. 49 475
[39] Gao L, Ding X, Lookman T, Sun J and Salje E K H 2016 Appl. Phys. Lett. 109 031912
[40] Armstrong M R, Radousky H B, Austin R A, et al. 2021 JOM 73 2185
[41] Degtyareva V F 2000 Phys. Rev. B 62 9
[42] Katzke H and Tolédano P 2008 Phys. Rev. B 77 024109
[43] Singh A K 1985 Mater. Sci. Forum 3 291
[44] Chandra Shekar N V and Rajan K G 2001 Bull. Mater. Sci. 24 1
[45] Avrami M 1939 J. Chem. Phys. 7 1103
[46] Avrami M 1940 J. Chem. Phys. 8 212
[47] Avrami M 1941 J. Chem. Phys. 9 177
[48] Krüger T, Merkau B, Grosshans W A and Holzapfel W B 1990 High Press. Res. 2 193
[1] Transport properties of Hall-type quantum states in disordered bismuthene
Jiaojiao Zhou(周娇娇), Jiangying Yu(余江应), Shuguang Cheng(成淑光), and Hua Jiang(江华). Chin. Phys. B, 2024, 33(4): 047105.
[2] Growth and characterization of Bi(110)/CrTe2 heterostructures: Exploring interplay between magnetism and topology
Zhenyu Yuan(袁震宇), Fazhi Yang(杨发枝), Baiqing Lv(吕佰晴), Yaobo Huang(黄耀波), Tian Qian(钱天), Jinpeng Xu(徐金朋), and Hong Ding(丁洪). Chin. Phys. B, 2024, 33(2): 026802.
[3] Atomistic insights into early stage corrosion of bcc Fe surfaces in oxygen dissolved liquid lead-bismuth eutectic (LBE-O)
Ting Zhou(周婷), Xing Gao(高星), Zhiwei Ma(马志伟), Hailong Chang(常海龙), Tielong Shen(申铁龙), Minghuan Cui(崔明焕), and Zhiguang Wang(王志光). Chin. Phys. B, 2023, 32(3): 036801.
[4] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[5] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[6] Metal substrates-induced phase transformation of monolayer transition metal dichalcogenides for hydrogen evolution catalysis
Zhe Wang(王喆) and Wenguang Zhu(朱文光). Chin. Phys. B, 2021, 30(11): 116401.
[7] Giant low-field magnetocaloric effect in EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds
Wen-Hao Jiang(姜文昊), Zhao-Jun Mo(莫兆军), Jia-Wei Luo(罗佳薇), Zhe-Xuan Zheng(郑哲轩), Qiu-Jie Lu(卢秋杰), Guo-Dong Liu(刘国栋), Jun Shen(沈俊), Lan Li(李岚). Chin. Phys. B, 2020, 29(3): 037502.
[8] Improvement of the low-field-induced magnetocaloric effect in EuTiO 3 compounds
Shuang Zeng(曾爽), Wen-Hao Jiang(姜文昊), Hui Yang(杨慧), Zhao-Jun Mo(莫兆军) Jun Shen(沈俊), and Lan Li(李岚) . Chin. Phys. B, 2020, 29(12): 127501.
[9] Phase transitions in bismuth under rapid compression
Dong-Liang Yang(杨栋亮), Jing Liu(刘景), Chuan-Long Lin(林传龙), Qiu-Min Jing(敬秋民), Yi Zhang(张毅), Yu Gong(宫宇), Yan-Chun Li(李延春), Xiao-Dong Li(李晓东). Chin. Phys. B, 2019, 28(3): 036201.
[10] High-pressure-induced phase transition in cinchomeronic acid polycrystalline form-I
Ting-Ting Yan(颜婷婷), Dong-Yang Xi(喜冬阳), Jun-Hai Wang(王俊海), Xu-Feng Fan(樊旭峰), Ye Wan(万晔), Li-Xiu Zhang(张丽秀), Kai Wang(王凯). Chin. Phys. B, 2019, 28(1): 016104.
[11] Metastable phase separation and rapid solidification of undercooled Co40Fe40Cu20 alloy
Xiaojun Bai(白晓军), Yaocen Wang(汪姚岑), Chongde Cao(曹崇德). Chin. Phys. B, 2018, 27(11): 116402.
[12] Influences of La and Ce doping on giant magnetocaloric effect of EuTiO
Zhao-Jun Mo(莫兆军), Qi-Lei Sun(孙启磊), Jun Shen(沈俊), Mo Yang(杨墨), Yu-Jin Li(黎玉进), Lan Li(李岚), Guo-Dong Liu(刘国栋), Cheng-Chun Tang(唐成春), Fan-Bin Meng(孟凡斌). Chin. Phys. B, 2018, 27(1): 017501.
[13] Multi-phase field simulation of grain growth in multiple phase transformations of a binary alloy
Li Feng(冯力), Beibei Jia(贾北北), Changsheng Zhu(朱昶胜), Guosheng An(安国升), Rongzhen Xiao(肖荣振), Xiaojing Feng(冯小静). Chin. Phys. B, 2017, 26(8): 080504.
[14] Low-temperature phase transformation of CZTS thin films
Wei Zhao(赵蔚), Lin-Yuan Du(杜霖元), Lin-Lin Liu(刘林林), Ya-Li Sun(孙亚利), Zhi-Wei Liu(柳志伟), Xiao-Yun Teng(滕晓云), Juan Xie(谢娟), Kuang Liu(刘匡), Wei Yu(于威), Guang-Sheng Fu(傅广生), Chao Gao(高超). Chin. Phys. B, 2017, 26(4): 046402.
[15] Cyclic stress induced phase transformation insuper-bainitic microstructure
Wencui Xiu(修文翠), Ying Han(韩英), Cheng Liu(刘澄), Hua Wu(吴化), Yunxu Liu(刘云旭). Chin. Phys. B, 2017, 26(3): 038101.
No Suggested Reading articles found!