|
Special Issue:
SPECIAL TOPIC — Structures and properties of materials under high pressure
|
| TOPICAL REVIEW — Structures and properties of materials under high pressure |
Prev
Next
|
|
|
High-pressure studies on quasi-one-dimensional systems |
| Wenhui Liu(刘雯慧)1,2, Jiajia Feng(冯嘉嘉)3, Wei Zhou(周苇)4, Sheng Li(李升)1,5,6,†, and Zhixiang Shi(施智祥)1,6,‡ |
1 School of Physics, Southeast University, Nanjing 211189, China; 2 Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, China; 3 Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, China; 4 School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, China; 5 Purple Mountain Laboratories, Nanjing 211111, China; 6 Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China |
|
|
|
|
Abstract Quasi-one-dimensional systems provide a unique platform for the exploration of novel quantum states due to their enhanced electronic correlations, strong anisotropy, and dimensional confinement. Among various external tuning methods, physical pressure has been experimentally demonstrated to be an exceptionally potent and precise method for modulating both the structural and electronic properties of quasi-one-dimensional systems. In this review, we focus on the application of pressure to construct pressure-temperature phase diagrams of quasi-one-dimensional materials and explore the intricate relationships among quantum phenomena between superconductivity and other electronic states, such as charge density wave, topological quantum states, and antiferromagnetism. By analyzing representative examples across distinct material families, we demonstrate how pressure can be used not only to induce superconductivity but also to reveal underlying quantum critical points and drive topological phase transitions. We emphasize the significant potential of pressure as a crucial tuning parameter for revealing novel quantum phenomena and driving the progress in advanced low-dimensional quantum materials.
|
Received: 25 March 2025
Revised: 26 May 2025
Accepted manuscript online: 27 June 2025
|
|
PACS:
|
81.40.Vw
|
(Pressure treatment)
|
| |
74.62.Fj
|
(Effects of pressure)
|
| |
61.50.Ks
|
(Crystallographic aspects of phase transformations; pressure effects)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1932217, 12374135, and 12304193), the National Key R&D Program of China (Grant Nos. 2024YFA1408400 and 2018YFA0704300), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB25000000), the Southeast University Interdisciplinary Research Program for Young Scholars, and the Open Research Fund of the Key Laboratory of Quantum Materials and Devices (Southeast University), Ministry of Education, China. |
Corresponding Authors:
Sheng Li, Zhixiang Shi
E-mail: sheng_li@seu.edu.cn;zxshi@seu.edu.cn
|
Cite this article:
Wenhui Liu(刘雯慧), Jiajia Feng(冯嘉嘉), Wei Zhou(周苇), Sheng Li(李升), and Zhixiang Shi(施智祥) High-pressure studies on quasi-one-dimensional systems 2025 Chin. Phys. B 34 088104
|
[1] Giamarchi T 2004 Chem. Rev. 104 5037 [2] Haldane F D M 1981 J. Phys. C: Solid State Phys. 14 2585 [3] Shchegolev I F 1972 Phys. Status Solidi A 12 9 [4] Zhang W and Sá De Melo C A R 2007 Adv. Phys. 56 545 [5] Denholme S J, Yukawa A, Tsumura K, Nagao M, Tamura R, Watauchi S, Tanaka I, Takayanagi H and Miyakawa N 2017 Sci. Rep. 7 45217 [6] Gooth J, Bradlyn B, Honnali S, Schindler C, Kumar N, Noky J, Qi Y, Shekhar C, Sun Y, Wang Z, Bernevig B A and Felser C 2019 Nature 575 315 [7] Boswell F W, Prodan A and Brandon J K 1983 J. Phys. C: Solid State Phys. 16 1067 [8] Autès G, Isaeva A, Moreschini L, Johannsen J C, Pisoni A, Mori R, Zhang W, Filatova T G, Kuznetsov A N, Forro L, Van den Broek W, Kim Y, Kim K S, Lanzara A, Denlinger J D, Rotenberg E, Bostwick A, Grioni M and Yazyev O V 2016 Nat. Mater. 15 154 [9] Ma N, Wang D Y, Huang B R, Li K Y, Song J P, Liu J Z, Mei H P, Ye M and Li A 2023 Chin. Phys. B 32 056801 [10] van Smaalen S 2005 Acta Crystallogr. A 61 51 [11] Hor Y S, Xiao Z L, Welp U, Ito Y, Mitchell J F, Cook R E, Kwok W K and Crabtree G W 2005 Nano Lett. 5 397 [12] Montambaux G 1988 Phys. Rev. B 38 4788 [13] Shaginyan V R, Msezane A Z, Japaridze G S, Artamonov S A and Leevik Y S 2022 Materials 15 3901 [14] Izyumov Y A 1988 Sov. Phys. Usp. 31 689 [15] Hong H Y and Steinfink H 1972 J. Solid State Chem. 5 93 [16] Wang M, Jin S J, Yi M, Song Y, Jiang H C, Zhang W L, Sun H L, Luo H Q, Christianson A D, Bourret-Courchesne E, Lee D H, Yao D X and Birgeneau R J 2017 Phys. Rev. B 95 060502(R) [17] Nambu Y, Ohgushi K, Suzuki S, Du F, Avdeev M, Uwatoko Y, Munakata K, Fukazawa H, Chi S X, Ueda Y and Sato T J 2012 Phys. Rev. B 85 064413 [18] Bao J K, Tang Z T, Jung H J, Liu J Y, Liu Y, Li L, Li Y K, Xu Z A, Feng C M, Chen H J, Chung D Y, Dravid V P, Cao G H and Kanatzidis M G 2018 J. Am. Chem. Soc. 140 4391 [19] Chen L, Zhao L L, Qiu X L, Zhang Q H, Liu K, Lin Q S and Wang G 2021 Inorg. Chem. 60 12941 [20] Zhou Y, Chen L, Wang G, Wang Y X, Wang Z C, Chai C C, Guo Z N, Hu J P and Chen X L 2022 Chin. Phys. Lett. 39 047401 [21] Sigrist M and Ueda K 1991 Rev. Mod. Phys. 63 239 [22] Xu C Q, Liu Y, Cai P G, Li B, Jiao W H, Li Y L, Zhang J Y, Zhou W, Qian B, Jiang X F, Shi Z X, Sankar R, Zhang J L, Yang F, Zhu Z W, Biswas P, Qian D, Ke X L and Xu X F 2020 J. Phys. Chem. Lett. 11 7782 [23] Lin C, Ochi M, Noguchi R, et al. 2021 Nat. Mater. 20 1093 [24] Ma J Z, Nie S M, Gui X, et al. 2022 Nat. Mater. 21 423 [25] NingW, Yu H Y, Liu Y Q, Han Y Y,Wang N, Yang J Y, Du H F, Zhang C J, Mao Z Q, Liu Y, Tian M L and Zhang Y H 2015 Nano Lett. 15 869 [26] Mao H K, Chen X J, Ding Y, Li B and Wang L 2018 Rev. Mod. Phys. 90 015007 [27] Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M,Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G and Shibauchi T 2016 Nat. Commun. 7 12146 [28] Rose E, Loose C, Kortus J, Pashkin A, Kuntscher C A, Ebbinghaus S G, Hanfland M, Lissner F, Schleid T and Dressel M 2013 J. Phys. Condens. Matter 25 014006 [29] Itoi M, Nakamura T and Uwatoko Y 2022 Materials 15 4638 [30] Clarke S M, Powderly K M, Walsh J P S, Yu T, Wang Y B, Meng Y, Jacobsen S D and Freedman D E 2019 Chem. Mater. 31 955 [31] Li Y H, Zhou P, Ding C, Lu Q, Wang X M and Sun J 2024 Chin. Phys. B 33 106102 [32] Abdel-Hafiez M, Shi L F, Cheng J G, Gorlova I G, Zybtsev S G, Pokrovskii V Y, Ao L Y, Huang J W, Yuan H T, Titov A N, Eriksson O and Ong C S 2024 Nano Lett. 24 5562 [33] Gao Y P, Tian C, Huang X L, Wang X and Cui T 2024 Phys. Rev. B 109 104501 [34] Island J O, Molina-Mendoza A J, Barawi M, Biele R, Flores E, Clamagirand J M, Ares J R, Sánchez C, van der Zant H S J, D’Agosta R, Ferrer I J and Castellanos-Gomez A 2017 2D Mater. 4 022003 [35] Balandin A A, Kargar F, Salguero T T and Lake R K 2022 Mater. Today 55 74 [36] Yue B B, Zhong W, Deng W, Wen T, Wang Y G, Yin Y Y, Shan P F, Wang J T, Yu X H and Hong F 2023 J. Am. Chem. Soc. 145 1301 [37] Yue B B, Zhong W, Zhang H, Zhou J, Miao J W, Kawaguchi S, Kadobayashi H and Hong F 2024 Phys. Rev. B 110 144515 [38] Yu H, Yan D Y, Guo Z P, Zhou Y Z, Yang X, Li P L, Wang Z J, Xiang X J, Li J K, Ma X L, Zhou R, Hong F, Wuli Y X, Shi Y G, Wang J T and Yu X H 2024 J. Am. Chem. Soc. 146 3890 [39] Keszler D A, Squattrito P J, Brese N E, IBERS J A, Shang M Y and Lu J X 1985 Inorg. Chem. 24 3063 [40] Liu W H, Feng J J, Hou Q, Li B, Wang K, Chen B, Li S and Shi Z X 2024 Phys. Rev. B 109 054513 [41] Yang H Y, Zhou Y H, Li L Y, Chen Z, Zhang Z Y, Wang S Y, Wang J, Chen X L, An C and Zhou Y 2022 Phys. Rev. Mater. 6 084803 [42] Gressier P., Meerschaut A., Guemas L., Rouxel J. and Monceau P. 1984 J. Solid State Chem. 51 141 [43] An C, Zhou Y H, Chen C H, Fei F C, Song F Q, Park C R, Zhou J H, Rubahn H G, Moshchalkov V V, Chen X L, Zhang G F and Yang Z R 2020 Adv. Mater. 32 2002352 [44] Pei C, Shi W, Zhao Y, Gao L, Gao J, Li Y, Zhu H, Zhang Q, Yu N, Li C, Cao W, Medvedev S A, Felser C, Yan B, Liu Z, Chen Y, Wang Z and Qi Y 2021 Mater. Today Phys. 21 100509 [45] Sipos B, Kusmartseva A F, Akrap A, Berger H, Forro L and Tutis E 2008 Nat. Mater. 7 960 [46] Chang J, Blackburn E, Holmes A T, Christensen N B, Larsen J, Mesot J, Liang R X, Bonn D A, Hardy W N, Watenphul A, Zimmermann M v, Forgan E M and Hayden S M 2012 Nat. Phys. 8 871 [47] Yu F H, Ma D H, Zhuo W Z, Liu S Q, Wen X K, Lei B, Ying J J and Chen X H 2021 Nat. Commun. 12 3645 [48] Lou R, Cai Y P, Liu Z H, Qian T, Zhao L X, Li Y, Liu K, Han Z Q, Zhang D D, He J B, Chen G F, Ding H and Wang S C 2016 Phys. Rev. B 93 115133 [49] Kogar A, de la Pena G A, Lee S J, Fang Y, Sun S X L, Lioi D B, Karapetrov G, Finkelstein K D, Ruff J P C, Abbamonte P and Rosenkranz S 2017 Phys. Rev. Lett. 118 027002 [50] Hamlin J J, Zocco D A, Sayles T A, Maple M B, Chu J H and Fisher I R 2009 Phys. Rev. Lett. 102 177002 [51] Feng J J, Susilo R A, Lin B C, Deng W, Wang Y j, Li B, Jiang K, Chen Z Q, Xing X Z, Shi Z X, Wang C L and Chen B 2020 Adv. Electron. Mater. 6 1901427 [52] Wang S Y, Wang Q, An C, Zhou Y H, Zhou Y, Chen X L, Hao N and Yang Z R 2023 Matter 6 3526 [53] Liu Z Y, Li J, Zhang J F, Li J, Yang P T, Zhang S, Chen G F, Uwatoko Y, Yang H X, Sui Y, Liu K and Cheng J G 2021 npj Quantum Mater. 6 90 [54] Briggs A, Monceau P, Nunez Regueiro M, Peyrard J, Ribaultl M and Richard J 1980 J. Phys. C: Solid State Phys. 13 2117 [55] Ido M, Okayama Y, Ijiri T and Okajima Y 1990 J. Phys. Soc. Jpn. 59 1341 [56] Monteverde M, Lorenzana J, Monceau P and Núñez-Regueiro M 2013 Phys. Rev. B 88 180504(R) [57] Gleason S L, Gim Y, Byrum T, Kogar A, Abbamonte P, Fradkin E, MacDougall G J, Van Harlingen D J, Zhu X D, Petrovic C and Cooper S L 2015 Phys. Rev. B 91 155124 [58] Yamaya K, Yoneda M, Yasuzuka S, Okajima Y and Tanda S 2002 J. Phys.: Condens. Matter 14 10767 [59] Yamamoto M 1978 J. Phys. Soc. Jpn. 45 431 [60] Yamaya K, Geballe T H, Kwak J F and Greene R L 1979 Solid State Commun. 31 627 [61] Cai Y K, Zhang C T, Cao T C, Feng J J, He Z, Xing X Z, Liu X B, Shi Z X, Qian B and Zhou W 2024 Phys. Rev. B 110 094516 [62] Yang X C, Luo X, Gao J J, Jiang Z Z, Wang W, Wang T Y, Si J G, Xi C Y, Song W H and Sun Y P 2021 Phys. Rev. B 104 155106 [63] Zhang J, Jia Y T,Wang X C, Li Z, Duan L, LiWM, Zhao J F, Cao L P, Dai G Y, Deng Z, Zhang S J, Feng S M, Yu R Z, Liu Q Q, Hu J P, Zhu J L and Jin C Q 2019 NPG Asia Mater. 11 60 [64] Qi Y P, Shi W J, Werner P, Naumov P G, Schnelle W, Wang L, Rana K G, Parkin S, Medvedev S A, Yan B H and Felser C 2018 npj Quantum Mater. 3 4 [65] Li X, Chen D Y, Jin M L, et al. 2019 Proc. Natl. Acad. Sci. USA 116 17696 [66] Feng J J, Chen Z C, Fan Y J, Yang M, Zhuang J C, Liu J Y, Wang M H, He Z, Guo H T, Qian B, Shi Z X and Zhou W 2023 Supercond. Sci. Technol. 36 085010 [67] Xu S X, Liu Z Y, Yang P T, Ruan B B, Ren Z A, Sun J P, Uwatoko Y, Wang B S and Cheng J G 2024 Phys. Rev. B 109 144107 [68] Xu F and Zhang L 2024 Chin. Phys. B 33 037402 [69] Liu R H, Wu G, Wu T, Fang D F, Chen H, Li S Y, Liu K, Xie Y L, Wang X F, Yang R L, Ding L, He C, Feng D L and Chen X H 2008 Phys. Rev. Lett. 101 087001 [70] Rullier-Albenque F, Colson D, Forget A and Alloul H 2009 Phys. Rev. Lett. 103 057001 [71] Chen H, Ren Y, Qiu Y, Bao W, Liu R H, Wu G, Wu T, Xie Y L, Wang X F, Huang Q and Chen X H 2009 EPL 85 17006 [72] Li Z, Zhou R, Liu Y, Sun D L, Yang J, Lin C T and Zheng G Q 2012 Phys. Rev. B 86 180501(R) [73] Takahashi H, Sugimoto A, Nambu Y, Yamauchi T, Hirata Y, Kawakami T, Avdeev M, Matsubayashi K, Du F, Kawashima C, Soeda H, Nakano S, Uwatoko Y, Ueda Y, Sato T J and Ohgushi K 2015 Nat. Mater. 14 1008 [74] Yamauchi T, Hirata Y, Ueda Y and Ohgushi K 2015 Phys. Rev. Lett. 115 246402 [75] Caron J M, Neilson J R, Miller D C, Llobet A and McQueen T M 2011 Phys. Rev. B 84 180409(R) [76] Mourigal M, Wu S, Stone M B, Neilson J R, Caron J M, McQueen T M and Broholm C L 2015 Phys. Rev. Lett. 115 047401 [77] Zheng L L, Frandsen B A, Wu C W, Yi M, Wu S, Huang Q Z, Bourret- Courchesne E, Simutis G, Khasanov R, Yao D X, Wang M and Birgeneau R J 2018 Phys. Rev. B 98 180402(R) [78] Ying J J, Lei H C, Petrovic C, Xiao YMand Struzhkin V V 2017 Phys. Rev. B 95 241109(R) [79] Du F, Ueda Y and Ohgushi K 2019 Phys. Rev. Lett. 123 086601 [80] Imaizumi S, Aoyama T, Kimura R, Sasaki K, Nambu Y, Avdeev M, Hirata Y, Ikemoto Y, Moriwaki T, Imai Y and Ohgushi K 2020 Phys. Rev. B 102 035104 [81] Yu J, Wang M, Frandsen B A, Sun H L, Yin J J, Liu Z J, Wu S, Yi M, Xu Z J, Acharya A, Huang Q Z, Bourret-Courchesne E, Lynn J W and Birgeneau R J 2020 Phys. Rev. B 101 235134 [82] Fan Y J, Liu J Y, Feng J J, Chen Z C, Wang M H, He Z, Guo H T, Qian B, Shi Z X and Zhou W 2022 Supercond. Sci. Technol. 35 085007 [83] Takahashi H, Kikuchi R, Kawashima C, Imaizumi S, Aoyama T and Ohgushi K 2022 Materials 15 1401 [84] Zhang Y, Lin L F, Zhang J J, Dagotto E and Dong S 2018 Phys. Rev. B 97 045119 [85] Bao J K, Liu J Y, Ma C W, Meng Z H, Tang Z T, Sun Y L, Zhai H F, Jiang H, Bai H, Feng C M, Xu Z A and Cao G H 2015 Phys. Rev. X 5 011013 [86] Tang Z T, Bao J K, Liu Y, Sun Y L, Ablimit A, Zhai H F, Jiang H, Feng C M, Xu Z A and Cao G H 2015 Phys. Rev. B 91 020506(R) [87] Tang Z T, Bao J K, Wang Z, Bai H, Jiang H, Liu Y, Zhai H F, Feng C M, Xu Z A and Cao G H 2015 Sci. China Mater. 58 16 [88] Sun J P, Jiao Y Y, Yang C L,WuW, Yi C J,Wang B S, Shi Y G, Luo J L, Uwatoko Y and Cheng J G 2017 J. Phys. Condens. Matter 29 455603 [89] Wang Z, Yi W, Wu Q, Sidorov V A, Bao J K, Tang Z T, Guo J, Zhou Y Z, Zhang S, Li H, Shi Y G, Wu X X, Zhang L, Yang K, Li A G, Cao G H, Hu J P, Sun L L and Zhao Z X 2016 Sci. Rep. 6 37878 [90] Liu Z Y, Mu Q G, Ren Z A, Sun J P and Cheng J G 2023 Sci. Sin., Phys., Mech. Astron. 53 127417 [91] Kong T, Bud’ko S L and Canfield P C 2015 Phys. Rev. B 91 020507(R) [92] Xiang J J, Yu Y L, Wu S Q, Li B Z, Shao Y T, Tang Z T, Bao J K and Cao G H 2019 Phys. Rev. Mater. 3 114802 [93] Li B Z, Wu S Q, Xiang J J, Zhu Q Q, Liu Y, Cao C and Cao G H 2023 Sci. China Phys, Mech. Astron. 66 237411 [94] Liu Z Y, Dong Q X, Yang P T, Shan P F, Wang B S, Sun J P, Dun Z L, Uwatoko Y, Chen G F, Dong X L, Zhao Z X and Cheng J G 2022 Phys. Rev. Lett. 128 187001 [95] Yang P T, Dong Q X, Shan P F, Liu Z Y, Sun J P, Dun Z L, Uwatoko Y, Chen G F, Wang B S and Cheng J G 2022 Chin. Phys. Lett. 39 067401 [96] Long S J, Chen L, Wang Y X, Zhou Y, Cai S, Guo J, Zhou Y Z, Yang K, Jiang S, Wu Q, Wang G, Hu J P and Sun L L 2022 Phys. Rev. B 106 214515 [97] Shan P F, Dong Q X, Yang P T, Xu L, Liu Z Y, Shi L F,Wang N N, Sun J P, Uwatoko Y, Chen G F, Wang B S and Cheng J G 2023 Phys. Rev. B 107 094519 [98] Zhou Y, Chen L, Zhao L L, Long S J, Wang Y X, Qiu X L, Chai C C, Guo Z N, Zhang Q H, Guo J, Liu K, Lin Q S, Sun L L, Hu J P and Wang G 2023 Sci. Sin., Phys., Mech. Astron. 53 127413 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|