Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 087201    DOI: 10.1088/1674-1056/addbc8
Special Issue: SPECIAL TOPIC — Structures and properties of materials under high pressure
SPECIAL TOPIC — Structures and properties of materials under high pressure Prev   Next  

High thermoelectric performance of SnS under high pressure and high temperature

Yuqi Gao(高语崎), Xinglin Wang(王星淋), Cun You(由存), Dianzhen Wang(王殿振), Nan Gao(高楠), Qi Jia(贾琪), Zhihui Li(李志慧), Qiang Tao(陶强)†, and Pinwen Zhu(朱品文)‡
Synergetic Extreme Condition High-Pressue Science Center, State Key Laboratory of High Pressure and Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
Abstract  Tin sulfide (SnS) is a promising non-toxic thermoelectric (TE) material to replace SnSe (Se is toxic), due to its similar structure and low thermal conductivity ($\kappa$) comparable to SnSe. However, the poor electrical conductivity ($\sigma$) of SnS results in lower TE performance. In this work, high pressure was utilized to regulate the electronic structure, thereby mediating the conflict of electron and phonon transport to optimize the TE performance. In situ measurements of thermoelectric properties for SnS under high pressure and high temperature revealed that although the Seebeck coefficient ($S$) and $\kappa$ slightly decrease with increasing pressure, the $\sigma$ dramatically increases with increasing pressure, finally increasing the dimensionless figure of merit ($ZT$). The $\sigma $ increases from 2135 S$\cdot$m$^{-1}$ to 83549 S$\cdot$m$^{-1}$ as the pressure increases from 1 GPa to 5 GPa at 325 K, representing an increase of an order of magnitude. The high $\sigma $ of SnS leads to an increase in the $PF$ to 1436 μW$\cdot$m$^{-1}\cdot$K$^{-2}$ at 5 GPa and 652 K. The maximum $ZT$ value of 0.77 at 5 GPa and 652 K was obtained, which is 4 times the maximum $ZT$ under ambient pressure and is comparable to that of doped SnS. The increase in $\sigma$ is due to the fact that pressure modulates the band structure of SnS by narrowing the band gap from 1.013 eV to 0.712 eV. This study presents a valuable guide for searching new high TE performance materials using high pressure.
Keywords:  thermoelectric materials      high pressure and high temperature      in situ measurement      SnS  
Received:  10 March 2025      Revised:  18 May 2025      Accepted manuscript online:  22 May 2025
PACS:  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
  66.70.-f (Nonelectronic thermal conduction and heat-pulse propagation in solids;thermal waves)  
  02.30.Cj (Measure and integration)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: The high-pressure experiments were performed at the B1 station of the Synergetic Extreme Condition User Facility (SECUF). The authors acknowledge funding support from the Program for the Development of Science and Technology of Jilin Province (Grant No. SKL202402004), the Jilin Province Major Science and Technology Program (Grant No. 20240211002GX), and the Open Research Fund of the Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University, 202405).
Corresponding Authors:  Qiang Tao, Pinwen Zhu     E-mail:  qiangtao@jlu.edu.cn;zhupw@jlu.edu.cn

Cite this article: 

Yuqi Gao(高语崎), Xinglin Wang(王星淋), Cun You(由存), Dianzhen Wang(王殿振), Nan Gao(高楠), Qi Jia(贾琪), Zhihui Li(李志慧), Qiang Tao(陶强), and Pinwen Zhu(朱品文) High thermoelectric performance of SnS under high pressure and high temperature 2025 Chin. Phys. B 34 087201

[1] Jiang B B, Yu Y, Cui J, Liu X X, Xie L, Liao J C, Zhang Q H, Huang Y, Ning S C, Jia B H, Zhu B, Bai S Q, Chen L D, Pennycook S J and He J Q 2021 Science 371 830
[2] Jiang B B, Qiu P F, Chen H Y, Zhang Q H, Zhao K P, Ren D D, Shi X and Chen L D 2017 Chem. Commun. 53 11658
[3] Shi X L, Zou J and Chen Z G 2020 Chem. Rev. 120 7399
[4] Tan G J, Zhao L D and Kanatzidis M G 2016 Chem. Rev. 116 12123
[5] Zhao L D, Lo S H, Zhang Y S, Sun H, Tan G J, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373
[6] Zhao L D, Tan G J, Hao S Q, He J Q, Pei Y L, Chi H, Wang H, Gong S K, Xu H B, Dravid V P, Uher C, Snyder G J, Wolverton C and Kanatzidis M G 2016 Science 351 141
[7] Tan G J, Shi F Y, Hao S Q, Zhao L D, Chi H, Zhang X M, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2016 Nat. Commun 7 12167
[8] Duan S C, Xue W H, Yao H H, Wang X Y, Wang C, Li S, Zhang Z W, Yin L, Bao X, Huang L H,Wang X D, Chen C, Sui J H, Chen Y, Mao J, Cao F, Wang Y M and Zhang Q 2022 Adv. Energy Mater 12 2103385
[9] Parker D and Singh D J 2010 J. Appl. Phys. 108 083712
[10] He W K, Wang D Y, Dong J F, Qiu Y, Fu L W, Feng Y, Hao Y J, Wang G T, Wang J F, Liu C, Li J F, He J Q and Zhao L D 2018 J. Mater. Chem. A 6 10048
[11] Tan Q and Li J F 2014 J. Electron. Mater. 43 2435
[12] Ge Z H, Zhao L D, Wu D, Liu X Y, Zhang B P, Li J F and He J Q 2016 Mater. Today 19 227
[13] He W, Wang D Y, Dong J F, Qiu Y, Fu L W, Feng Y, Hao Y J, Wang G T, Wang J F, Liu C, Li J F, He J Q and Zhao L D 2018 J. Mater Chem A 6 10048
[14] He W, Wang D Y, Wu H J, Xiao Y, Zhang Y, He D S, Feng Y, Hao Y J, Dong J F, Chetty R J, Hao L, Chen D F, Qin J F, Yang Q, Li X, Song J M, Zhu Y C, Xu W, Niu C L, Li X, Wang G T, Liu C, Ohta M, Pennycook S J, He J, Li J F and Zhao L D 2019 Science 365 1418
[15] Yang H Q, Wang X Y, Wu H, Zhang B, Xie D D, Chen Y J, Lu X, Han X D, Miao L and Zhou X Y 2019 J. Mater. Chem. C 7 3351
[16] Xue W H, Mao J, Liu K J, Zhang Q and Li J F 2024 ACS Appl. Mater. Interfaces 16 38073
[17] Wu H, Peng K, Zhang B, Gong X N, Feng Z Z, Zhang X M, Xi M, Yan X M, Zhang Y S, Wang G Y, Lu X and Zhou X Y 2020 Mater. Today Phys. 14 100221
[18] Asfandiyar, Cai B W, Zhao L D and Li J F 2020 J. Materiomics 6 77
[19] Wu H, Peng K, Zhang B, Gong X N, Feng Z Z, Zhang X M, Xi M, Yan X M, Zhang Y S, Wang G Y, Lu X and Zhou X Y 2020 Mater. Today Phys. 14 100221
[20] Niu Y, Chen Y D, Jiang J, Pan Y, Yang C C and Wang C 2020 IOP Conf. Ser.: Mater. Sci. Eng. 738 012016
[21] Tan Q, Zhao L D, Li J F, Wu C F, Wei T R, Xing Z B and Kanatzidis M G 2014 J Mater Chem A 2 17302
[22] Zhou B Q, Li S, Li W, Li J, Zhang X Y, Lin S Q, Chen Z W and Pei Y Z 2017 ACS Appl. Mater. Interfaces 9 34033
[23] Ovsyannikov S V, Shchennikov V V, Vorontsov G V, Manakov A Y, Likhacheva A Y and Kulbachinski V A 2008 J. Appl. Phys. 104 053713
[24] Ovsyannikov S V, Shchennikov V V, Manakov A Y, Likhacheva A Y, Ponosov Y S, Mogilenskikh V E, Vokhmyanin A P, Ancharov A I and Skipetrov E P 2009 Phys. Status Solidi B 246 615
[25] Ovsyannikov S V, Shchennikov V V, Ponosov Y S, Gudina S V, Guk V G, Skipetrov E P and Mogilenskikh V E 2004 J. Phys. D: Appl. Phys. 37 1151
[26] Ovsyannikov S V and Shchennikov V V 2007 Appl. Phys. Lett. 90 122103
[27] Ovsyannikov S V and Shchennikov V V 2004 Physica B 344 190
[28] Zhao D Y, Yang M M, Sun H R, Chen X, Zhang Y S and Liu X B 2023 Chin. Phys. B 32 107305
[29] Zheng B W, Chen T, Sun H R, Yang M M, Yang B C, Chen X, Zhang Y S and Liu X B 2024 Chin. Phys. Lett. 41 057301
[30] Han S, Duan S, Liu Y X,Wang C, Chen X, Sun H R and Liu X B 2023 Chin. Phys. B 32 016101
[31] Chen L C, Chen P Q, Li W J, Zhang Q, Struzhkin V V, Goncharov A F, Ren Z F and Chen X J 2019 Nat. Mater. 18 1321
[32] Wang D Z, Zou J, You C, Ge Y F,Wang X L, Liang X, Zhou Q, Tao Q, Chen Y L, Zhu P and Cui T 2024 Appl. Phys. Lett. 125 213903
[33] Matsumura T and Sato Y 2010 Journal of Modern Physics 01 340
[34] Birch F 1938 J. Appl. Phys. 9 279
[35] Zhao W, Cheng J E, Wang D Z, You C, Zhang J M, Ye M Y, Wang X, Dong S S, Tao Q and Zhu P W 2022 Rev. Sci. Instrum. 93 103901
[36] Zhao W, Cheng J E, Li Y, Ye M Y, Wang D Z, Wang L, Gai X M, You C, Qu X, Tao Q and Zhu P W 2023 Appl. Phys. Lett. 123 062202
[37] Norton K J, Alam F and Lewis D J 2021 Appl. Sci-Basel 11 2062
[38] Li F, Tian Y H, Su S B, Wang C S, Li D S, Cai D D and Zhang S Q 2021 Appl. Catal. B 299 120665
[39] Tang M and Ge Q F 2017 Chin. J. Catal. 38 1621
[40] Hafner J 2008 J. Comput. Chem. 29 2044
[41] Rundle J and Leoni S 2022 J. Phys. Chem. C 126 14036
[42] Li W T and Yang C X 2023 Physica E 145 115521
[43] Bastos C M O, Sabino F P, Junior P E F, Campos T, Silva J L F D and Sipahi G M 2016 Semicond. Sci. Technol. 31 105002
[44] Errandonea D, Sanchez-Royo J F, Segura A, Chevy A and Roa L 1998 High Pressure Res. 16 13
[45] Guo Z, Song K, Yan Z P, Sun P, Tan X J, Wu G, Zhang Q, Liu G Q, Yu B and Jiang J 2021 Chem. Eng. J. 426 131853
[46] Wang D Z, You C, Ge Y f, Wang F, Wang X L, Liang X, Zhou Q, Tao Q, Chen Y L and Zhu P W 2024 Appl. Phys. Lett. 125 013903
[47] Manga M and Jeanloz R 1997 J. Geophys. Res. Solid Earth 102 2999
[48] Ehm L, Knorr K, Dera P, Krimmel A, Bouvier P and Mezouar M 2004 J. Phys.: Condens. Matter 16 3545
[49] Ouyang N, Wang C and Chen Y 2022 Int. J. Heat Mass Transfer 192 122859
[50] Wu J, Zhang H, Wang T Y, Qian X, Song B, Liu T H and Yang R G 2023 Int. J. Heat Mass Transfer 208 124092
[51] Borup K A, de Boor J, Wang H, Drymiotis F, Gascoin F, Shi X, Chen L, Fedorov M I, Mueller E, Iversena B B and Snyder G J 2015 Energy Environ. Sci. 8 423
[52] Kim H S, Gibbs Z M, Tang Y,Wang H and Snyder G J 2015 APL Mater. 3 041506
[1] Heterogeneous TiC-based composite ceramics with high toughness
Xiaoci Ma(马孝慈), Yufei Ge(葛雨非), Yutong Hou(侯语同), Keyu Shi(施柯羽), Jiaqi Zhang(张佳琪), Gaoping Yue(岳高平), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 086104.
[2] Synergistic improvements in mechanical and thermal performance of TiB2 solid-solution-based composites
Zhuang Li(李壮), Cun You(由存), Zhihui Li(李志慧), Xuepeng Li(李雪鹏), Guiqian Sun(孙贵乾), Xinglin Wang(王星淋), Qi Jia(贾琪), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 086105.
[3] Measurement of the eutectic point of Fe-C alloy under 5 Gpa
Ting Zhang(张亭), Xiuyan Wei(魏秀艳), Zuguang Hu(胡祖光), Jianyun Yang(杨建云), Duanwei He(贺端威), Khalid Nabulsi, and Guodong (David) Zhan(詹国栋). Chin. Phys. B, 2025, 34(6): 066203.
[4] High-entropy alloys in thermoelectric application: A selective review
Kai Ren(任凯), Wenyi Huo(霍文燚), Shuai Chen(陈帅), Yuan Cheng(程渊), Biao Wang(王彪), and Gang Zhang(张刚). Chin. Phys. B, 2024, 33(5): 057202.
[5] Thermal conductivity of iron under the Earth's inner core pressure
Cui-E Hu(胡翠娥), Mu-Xin Jiao(焦亩鑫), Xue-Nan Yang(杨学楠), Zhao-Yi Zeng(曾召益), and Jun Chen(陈军). Chin. Phys. B, 2024, 33(10): 106501.
[6] Silicon photomultiplier based scintillator thermal neutron detector for China Spallation Neutron Source (CSNS)
Xiu-Ping Yue(岳秀萍), Zhi-Fu Zhu(朱志甫), Bin Tang(唐彬), Chang Huang(黄畅), Qian Yu(于潜), Shao-Jia Chen(陈少佳), Xiu-Ku Wang(王修库), Hong Xu(许虹), Shi-Hui Zhou(周诗慧),Xiao-Jie Cai(蔡小杰), Hao Yang(杨浩), Zhi-Yong Wan(万志勇),Zhi-Jia Sun(孙志嘉), and Yun-Tao Liu(刘云涛). Chin. Phys. B, 2023, 32(9): 090402.
[7] High-pressure and high-temperature sintering of pure cubic silicon carbide: A study on stress-strain and densification
Jin-Xin Liu(刘金鑫), Fang Peng(彭放), Guo-Long Ma(马国龙), Wen-Jia Liang(梁文嘉), Rui-Qi He(何瑞琦), Shi-Xue Guan(管诗雪), Yue Tang(唐越), and Xiao-Jun Xiang(向晓君). Chin. Phys. B, 2023, 32(9): 098101.
[8] Energy conversion materials for the space solar power station
Xiao-Na Ren(任晓娜), Chang-Chun Ge(葛昌纯), Zhi-Pei Chen(陈志培), Irfan(伊凡), Yongguang Tu(涂用广), Ying-Chun Zhang(张迎春), Li Wang(王立), Zi-Li Liu(刘自立), and Yi-Qiu Guan(关怡秋). Chin. Phys. B, 2023, 32(7): 078802.
[9] Analysis of displacement damage effects on the charge-coupled device induced by neutrons at Back-n in the China Spallation Neutron Source
Yuan-Yuan Xue(薛院院), Zu-Jun Wang(王祖军), Wei Chen(陈伟), Xiao-Qiang Guo(郭晓强), Zhi-Bin Yao(姚志斌), Bao-Ping He(何宝平), Xu Nie(聂栩), Shankun Lai(赖善坤), Gang Huang(黄港), Jiang-Kun Sheng(盛江坤), Wu-Ying Ma(马武英), and Shi-Long Gou(缑石龙). Chin. Phys. B, 2023, 32(7): 076101.
[10] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), and Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[11] Measurement of the relative neutron sensitivity curve of a LaBr3(Ce) scintillator based on the CSNS Back-n white neutron source
Jian Liu(刘建), Dongming Wang(王东明), Yuecheng Fu(甫跃成), Zhongbao Li(李忠宝), Han Yi(易晗), and Longtao Yi(易龙涛). Chin. Phys. B, 2023, 32(10): 100703.
[12] Prediction of superionic state in LiH2 at conditions enroute to nuclear fusion
Fude Li(李福德), Hao Wang(王豪), Jinlong Li(李津龙), and Huayun Geng(耿华运). Chin. Phys. B, 2023, 32(10): 106103.
[13] A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer
Hsiang-Chun Wang(王祥骏), Yuheng Lin(林钰恒), Xiao Liu(刘潇), Xuanhua Deng(邓煊华),Jianwei Ben(贲建伟), Wenjie Yu(俞文杰), Deliang Zhu(朱德亮), and Xinke Liu(刘新科). Chin. Phys. B, 2023, 32(1): 018504.
[14] New experimental measurement of natSe(n, γ) cross section between 1 eV to 1 keV at the CSNS Back-n facility
Xin-Rong Hu(胡新荣), Long-Xiang Liu(刘龙祥), Wei Jiang(蒋伟), Jie Ren(任杰), Gong-Tao Fan(范功涛), Hong-Wei Wang(王宏伟), Xi-Guang Cao(曹喜光), Long-Long Song(宋龙龙), Ying-Du Liu(刘应都), Yue Zhang(张岳), Xin-Xiang Li(李鑫祥), Zi-Rui Hao(郝子锐), Pan Kuang(匡攀), Xiao-He Wang(王小鹤), Ji-Feng Hu(胡继峰), Bing Jiang(姜炳), De-Xin Wang(王德鑫), Suyalatu Zhang(张苏雅拉吐), Zhen-Dong An(安振东), Yu-Ting Wang(王玉廷), Chun-Wang Ma(马春旺), Jian-Jun He(何建军), Jun Su(苏俊), Li-Yong Zhang(张立勇), Yu-Xuan Yang(杨宇萱), Sheng Jin(金晟), and Kai-Jie Chen(陈开杰). Chin. Phys. B, 2022, 31(8): 080101.
[15] Measurement of 232Th (n,γ) cross section at the CSNS Back-n facility in the unresolved resonance region from 4 keV to 100 keV
Bing Jiang(姜炳), Jianlong Han(韩建龙), Jie Ren(任杰), Wei Jiang(蒋伟), Xiaohe Wang(王小鹤), Zian Guo(郭子安), Jianglin Zhang(张江林), Jifeng Hu(胡继峰), Jingen Chen(陈金根), Xiangzhou Cai(蔡翔舟), Hongwei Wang(王宏伟), Longxiang Liu(刘龙祥), Xinxiang Li(李鑫祥), Xinrong Hu(胡新荣), and Yue Zhang(张岳). Chin. Phys. B, 2022, 31(6): 060101.
No Suggested Reading articles found!