|
Special Issue:
SPECIAL TOPIC — Structures and properties of materials under high pressure
|
| SPECIAL TOPIC — Structures and properties of materials under high pressure |
Prev
Next
|
|
|
High thermoelectric performance of SnS under high pressure and high temperature |
| Yuqi Gao(高语崎), Xinglin Wang(王星淋), Cun You(由存), Dianzhen Wang(王殿振), Nan Gao(高楠), Qi Jia(贾琪), Zhihui Li(李志慧), Qiang Tao(陶强)†, and Pinwen Zhu(朱品文)‡ |
| Synergetic Extreme Condition High-Pressue Science Center, State Key Laboratory of High Pressure and Superhard Materials, College of Physics, Jilin University, Changchun 130012, China |
|
|
|
|
Abstract Tin sulfide (SnS) is a promising non-toxic thermoelectric (TE) material to replace SnSe (Se is toxic), due to its similar structure and low thermal conductivity ($\kappa$) comparable to SnSe. However, the poor electrical conductivity ($\sigma$) of SnS results in lower TE performance. In this work, high pressure was utilized to regulate the electronic structure, thereby mediating the conflict of electron and phonon transport to optimize the TE performance. In situ measurements of thermoelectric properties for SnS under high pressure and high temperature revealed that although the Seebeck coefficient ($S$) and $\kappa$ slightly decrease with increasing pressure, the $\sigma$ dramatically increases with increasing pressure, finally increasing the dimensionless figure of merit ($ZT$). The $\sigma $ increases from 2135 S$\cdot$m$^{-1}$ to 83549 S$\cdot$m$^{-1}$ as the pressure increases from 1 GPa to 5 GPa at 325 K, representing an increase of an order of magnitude. The high $\sigma $ of SnS leads to an increase in the $PF$ to 1436 μW$\cdot$m$^{-1}\cdot$K$^{-2}$ at 5 GPa and 652 K. The maximum $ZT$ value of 0.77 at 5 GPa and 652 K was obtained, which is 4 times the maximum $ZT$ under ambient pressure and is comparable to that of doped SnS. The increase in $\sigma$ is due to the fact that pressure modulates the band structure of SnS by narrowing the band gap from 1.013 eV to 0.712 eV. This study presents a valuable guide for searching new high TE performance materials using high pressure.
|
Received: 10 March 2025
Revised: 18 May 2025
Accepted manuscript online: 22 May 2025
|
|
PACS:
|
72.20.-i
|
(Conductivity phenomena in semiconductors and insulators)
|
| |
66.70.-f
|
(Nonelectronic thermal conduction and heat-pulse propagation in solids;thermal waves)
|
| |
02.30.Cj
|
(Measure and integration)
|
| |
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
| Fund: The high-pressure experiments were performed at the B1 station of the Synergetic Extreme Condition User Facility (SECUF). The authors acknowledge funding support from the Program for the Development of Science and Technology of Jilin Province (Grant No. SKL202402004), the Jilin Province Major Science and Technology Program (Grant No. 20240211002GX), and the Open Research Fund of the Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University, 202405). |
Corresponding Authors:
Qiang Tao, Pinwen Zhu
E-mail: qiangtao@jlu.edu.cn;zhupw@jlu.edu.cn
|
Cite this article:
Yuqi Gao(高语崎), Xinglin Wang(王星淋), Cun You(由存), Dianzhen Wang(王殿振), Nan Gao(高楠), Qi Jia(贾琪), Zhihui Li(李志慧), Qiang Tao(陶强), and Pinwen Zhu(朱品文) High thermoelectric performance of SnS under high pressure and high temperature 2025 Chin. Phys. B 34 087201
|
[1] Jiang B B, Yu Y, Cui J, Liu X X, Xie L, Liao J C, Zhang Q H, Huang Y, Ning S C, Jia B H, Zhu B, Bai S Q, Chen L D, Pennycook S J and He J Q 2021 Science 371 830 [2] Jiang B B, Qiu P F, Chen H Y, Zhang Q H, Zhao K P, Ren D D, Shi X and Chen L D 2017 Chem. Commun. 53 11658 [3] Shi X L, Zou J and Chen Z G 2020 Chem. Rev. 120 7399 [4] Tan G J, Zhao L D and Kanatzidis M G 2016 Chem. Rev. 116 12123 [5] Zhao L D, Lo S H, Zhang Y S, Sun H, Tan G J, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373 [6] Zhao L D, Tan G J, Hao S Q, He J Q, Pei Y L, Chi H, Wang H, Gong S K, Xu H B, Dravid V P, Uher C, Snyder G J, Wolverton C and Kanatzidis M G 2016 Science 351 141 [7] Tan G J, Shi F Y, Hao S Q, Zhao L D, Chi H, Zhang X M, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2016 Nat. Commun 7 12167 [8] Duan S C, Xue W H, Yao H H, Wang X Y, Wang C, Li S, Zhang Z W, Yin L, Bao X, Huang L H,Wang X D, Chen C, Sui J H, Chen Y, Mao J, Cao F, Wang Y M and Zhang Q 2022 Adv. Energy Mater 12 2103385 [9] Parker D and Singh D J 2010 J. Appl. Phys. 108 083712 [10] He W K, Wang D Y, Dong J F, Qiu Y, Fu L W, Feng Y, Hao Y J, Wang G T, Wang J F, Liu C, Li J F, He J Q and Zhao L D 2018 J. Mater. Chem. A 6 10048 [11] Tan Q and Li J F 2014 J. Electron. Mater. 43 2435 [12] Ge Z H, Zhao L D, Wu D, Liu X Y, Zhang B P, Li J F and He J Q 2016 Mater. Today 19 227 [13] He W, Wang D Y, Dong J F, Qiu Y, Fu L W, Feng Y, Hao Y J, Wang G T, Wang J F, Liu C, Li J F, He J Q and Zhao L D 2018 J. Mater Chem A 6 10048 [14] He W, Wang D Y, Wu H J, Xiao Y, Zhang Y, He D S, Feng Y, Hao Y J, Dong J F, Chetty R J, Hao L, Chen D F, Qin J F, Yang Q, Li X, Song J M, Zhu Y C, Xu W, Niu C L, Li X, Wang G T, Liu C, Ohta M, Pennycook S J, He J, Li J F and Zhao L D 2019 Science 365 1418 [15] Yang H Q, Wang X Y, Wu H, Zhang B, Xie D D, Chen Y J, Lu X, Han X D, Miao L and Zhou X Y 2019 J. Mater. Chem. C 7 3351 [16] Xue W H, Mao J, Liu K J, Zhang Q and Li J F 2024 ACS Appl. Mater. Interfaces 16 38073 [17] Wu H, Peng K, Zhang B, Gong X N, Feng Z Z, Zhang X M, Xi M, Yan X M, Zhang Y S, Wang G Y, Lu X and Zhou X Y 2020 Mater. Today Phys. 14 100221 [18] Asfandiyar, Cai B W, Zhao L D and Li J F 2020 J. Materiomics 6 77 [19] Wu H, Peng K, Zhang B, Gong X N, Feng Z Z, Zhang X M, Xi M, Yan X M, Zhang Y S, Wang G Y, Lu X and Zhou X Y 2020 Mater. Today Phys. 14 100221 [20] Niu Y, Chen Y D, Jiang J, Pan Y, Yang C C and Wang C 2020 IOP Conf. Ser.: Mater. Sci. Eng. 738 012016 [21] Tan Q, Zhao L D, Li J F, Wu C F, Wei T R, Xing Z B and Kanatzidis M G 2014 J Mater Chem A 2 17302 [22] Zhou B Q, Li S, Li W, Li J, Zhang X Y, Lin S Q, Chen Z W and Pei Y Z 2017 ACS Appl. Mater. Interfaces 9 34033 [23] Ovsyannikov S V, Shchennikov V V, Vorontsov G V, Manakov A Y, Likhacheva A Y and Kulbachinski V A 2008 J. Appl. Phys. 104 053713 [24] Ovsyannikov S V, Shchennikov V V, Manakov A Y, Likhacheva A Y, Ponosov Y S, Mogilenskikh V E, Vokhmyanin A P, Ancharov A I and Skipetrov E P 2009 Phys. Status Solidi B 246 615 [25] Ovsyannikov S V, Shchennikov V V, Ponosov Y S, Gudina S V, Guk V G, Skipetrov E P and Mogilenskikh V E 2004 J. Phys. D: Appl. Phys. 37 1151 [26] Ovsyannikov S V and Shchennikov V V 2007 Appl. Phys. Lett. 90 122103 [27] Ovsyannikov S V and Shchennikov V V 2004 Physica B 344 190 [28] Zhao D Y, Yang M M, Sun H R, Chen X, Zhang Y S and Liu X B 2023 Chin. Phys. B 32 107305 [29] Zheng B W, Chen T, Sun H R, Yang M M, Yang B C, Chen X, Zhang Y S and Liu X B 2024 Chin. Phys. Lett. 41 057301 [30] Han S, Duan S, Liu Y X,Wang C, Chen X, Sun H R and Liu X B 2023 Chin. Phys. B 32 016101 [31] Chen L C, Chen P Q, Li W J, Zhang Q, Struzhkin V V, Goncharov A F, Ren Z F and Chen X J 2019 Nat. Mater. 18 1321 [32] Wang D Z, Zou J, You C, Ge Y F,Wang X L, Liang X, Zhou Q, Tao Q, Chen Y L, Zhu P and Cui T 2024 Appl. Phys. Lett. 125 213903 [33] Matsumura T and Sato Y 2010 Journal of Modern Physics 01 340 [34] Birch F 1938 J. Appl. Phys. 9 279 [35] Zhao W, Cheng J E, Wang D Z, You C, Zhang J M, Ye M Y, Wang X, Dong S S, Tao Q and Zhu P W 2022 Rev. Sci. Instrum. 93 103901 [36] Zhao W, Cheng J E, Li Y, Ye M Y, Wang D Z, Wang L, Gai X M, You C, Qu X, Tao Q and Zhu P W 2023 Appl. Phys. Lett. 123 062202 [37] Norton K J, Alam F and Lewis D J 2021 Appl. Sci-Basel 11 2062 [38] Li F, Tian Y H, Su S B, Wang C S, Li D S, Cai D D and Zhang S Q 2021 Appl. Catal. B 299 120665 [39] Tang M and Ge Q F 2017 Chin. J. Catal. 38 1621 [40] Hafner J 2008 J. Comput. Chem. 29 2044 [41] Rundle J and Leoni S 2022 J. Phys. Chem. C 126 14036 [42] Li W T and Yang C X 2023 Physica E 145 115521 [43] Bastos C M O, Sabino F P, Junior P E F, Campos T, Silva J L F D and Sipahi G M 2016 Semicond. Sci. Technol. 31 105002 [44] Errandonea D, Sanchez-Royo J F, Segura A, Chevy A and Roa L 1998 High Pressure Res. 16 13 [45] Guo Z, Song K, Yan Z P, Sun P, Tan X J, Wu G, Zhang Q, Liu G Q, Yu B and Jiang J 2021 Chem. Eng. J. 426 131853 [46] Wang D Z, You C, Ge Y f, Wang F, Wang X L, Liang X, Zhou Q, Tao Q, Chen Y L and Zhu P W 2024 Appl. Phys. Lett. 125 013903 [47] Manga M and Jeanloz R 1997 J. Geophys. Res. Solid Earth 102 2999 [48] Ehm L, Knorr K, Dera P, Krimmel A, Bouvier P and Mezouar M 2004 J. Phys.: Condens. Matter 16 3545 [49] Ouyang N, Wang C and Chen Y 2022 Int. J. Heat Mass Transfer 192 122859 [50] Wu J, Zhang H, Wang T Y, Qian X, Song B, Liu T H and Yang R G 2023 Int. J. Heat Mass Transfer 208 124092 [51] Borup K A, de Boor J, Wang H, Drymiotis F, Gascoin F, Shi X, Chen L, Fedorov M I, Mueller E, Iversena B B and Snyder G J 2015 Energy Environ. Sci. 8 423 [52] Kim H S, Gibbs Z M, Tang Y,Wang H and Snyder G J 2015 APL Mater. 3 041506 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|