Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 087202    DOI: 10.1088/1674-1056/adce98
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of side group on mechanically induced conductance switching in 4,40-dipyridyl-based single-molecule junctions

Zhen Wan(万振)1,†, Chang-Feng Zheng(郑长风)1,†, Lin Liu(刘琳)1, Yun-Long Ge(葛云龙)1, Guang-Ping Zhang(张广平)1,‡, Shuai Qiu(邱帅)1, Hui Wang(王辉)2, and Zong-Liang Li(李宗良)1,§
1 Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China;
2 College of Physics and Electronic Engineering, Qilu Normal University, Jinan 250200, China
Abstract  The forming processes of $4,4^{\prime}$-dipyridyl-based single-molecule junctions and mechanically induced conductance switching as well as the side-group effects are systematically investigated by applying the ab initio-based adiabatic geometric optimization method and the one-dimensional transmission combined with three-dimensional correction approximation (OTCTCA) method. The numerical results show that for the $4,4^{\prime}$-dipyridyl with a $\pi$-conjugated phenyl-phosphoryl or diphenylsilyl side group, the pyridyl vertically anchors on the second atomic layer of the pyramid-shaped Au tip electrode at small inter-electrode distances by laterally pushing the apical Au atom aside, which induces stronger pyridyl-electrode coupling and high-conductance state of the formed junctions. As the inter-electrode distance increases, the pyridyl shifts to the apical Au atom of the tip electrode. This apical Au atom introduces additional scatterings to the tunneling electrons and significantly decreases the conductance of the junctions. Furthermore, for the $4,4^{\prime}$-dipyridyl with a phenyl-phosphoryl side group, the probability of manifesting the high-conductance state is decreased due to the oxygen atom reducing the probability of the pyridyl adsorbing on the second layer of Au tip electrode. In contrast, for the $4,4^{\prime}$-dipyridyl with a non-conjugated cyclohexyl-phosphoryl side group, the steric hindrance from the bulky cyclohexyl group leads the molecule to preferentially form the O-Au contact, which prevents both the high conductance and mechanically induced conductance switching of the junction. Our results provide a theoretical understanding of the side-group effects on electronic transport properties of single-molecule junctions, offering an alternative explanation for the experimental observations.
Keywords:  single-molecule junction      electron transport properties      conductance switching      side-group effects  
Received:  11 February 2025      Revised:  11 March 2025      Accepted manuscript online:  21 April 2025
PACS:  85.65.+h (Molecular electronic devices)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  73.63.Rt (Nanoscale contacts)  
  82.20.Wt (Computational modeling; simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12474286, 22173052, and 12204281).
Corresponding Authors:  Guang-Ping Zhang, Zong-Liang Li     E-mail:  zhangguangping@sdnu.edu.cn;lizongliang@sdnu.edu.cn

Cite this article: 

Zhen Wan(万振), Chang-Feng Zheng(郑长风), Lin Liu(刘琳), Yun-Long Ge(葛云龙), Guang-Ping Zhang(张广平), Shuai Qiu(邱帅), Hui Wang(王辉), and Zong-Liang Li(李宗良) Effect of side group on mechanically induced conductance switching in 4,40-dipyridyl-based single-molecule junctions 2025 Chin. Phys. B 34 087202

[1] Lörtscher E 2013 Nat. Nanotechnol. 8 381
[2] Haedler A T, Kreger K, Issac A, Wittmann B, Kivala M, Hammer N, Köhler J, Schmidt H and Hildner R 2015 Nature 523 196
[3] Reed M A, Zhou C, Muller C J, Burgin T P and Tour J M 1997 Science 278 252
[4] Xu B Q, Li X L, Xiao X Y, Sakaguchi H and Tao N J 2005 Nano Lett. 5 1491
[5] Xiang D, Jeong H, Kim D, Lee T, Cheng Y J, Wang Q L and Mayer D 2013 Nano Lett. 13 2809
[6] Vezzoli A, Grace I, Brooke C, Wang K, Lambert C J, Xu B Q, Nichols R J and Higgins S J 2015 Nanoscale 7 18949
[7] Xiang D,Wang X L, Jia C C, Lee T and Guo X F 2016 Chem. Rev. 116 4318
[8] Jia C C, Migliore A, Xin N, Huang S Y, Wang J Y, Yang Q, Wang S P, Chen H L,Wang D M, Feng B Y, Liu Z R, Zhang G Y, Qu D H, Tian H, Ratner M A, Xu H Q, Nitzan A and Guo X F 2016 Science 352 1443
[9] Chen D H, Yang Z, Fu X Y, Qin S A, Yan Y, Wang C K, Li Z L and Qiu S 2024 Chin. Phys. B 33 047201
[10] Li H X, Garner M H, Su T A, Jensen A, Inkpen M S, Steigerwald M L, Venkataraman L, Solomon G C and Nuckolls C 2017 J. Am. Chem. Soc. 139 10212
[11] Liu R, Bi J J, Xie Z, Yin K, Wang D, Zhang G P, Xiang D, Wang C K and Li Z L 2018 Phys. Rev. Appl. 9 054023
[12] Yan Y, Sun F, Yang Z, Kong C Y, Ge Y L, Chen D H, Qiu S and Li Z L 2024 Acta Phys. Sin. 73 088502 (in Chinese)
[13] Tan M, Sun F, Zhao X, Zhao Z, Zhang S, Xu X, Adijiang A, Zhang W, Wang H,Wang C, Li Z, Scheer E and Xiang D 2024 J. Am. Chem. Soc. 146 6856
[14] Li H, Garner M H, Shangguan Z, Chen Y, Zheng Q, Su T A, Neupane M, Liu T, Steigerwald M L, Ng F, Nuckolls C, Xiao S X, Solomon G C and Venkataraman L 2018 J. Am. Chem. Soc. 140 15080
[15] Xie X M, Li P H, Xu Y X, Zhou L, Yan Y, Xie L H, Jia C C and Guo X F 2022 ACS Nano 16 3476
[16] Liu R, Han Y M, Sun F, Khatri G, Kwon J, Nickle C,Wang L J,Wang C K, Thompson D, Li Z L, Nijhuis C A and Barco E D 2022 Adv. Mater. 34 2202135
[17] Metzger R M 2009 Synth. Met. 159 2277
[18] Guo C L,Wang K, Zerah-Harush E, Hamill J,Wang B, Dubi Y and Xu B Q 2016 Nat. Chem. 8 484
[19] Sun F, Liu R, Liu L, Yan Y, Wang S S, Yang Z, Suo Y Q, Wang C K and Li Z L 2022 Physica E 140 115186
[20] Fu H Y, Sun F, Liu R, Suo Y Q, Bi J J, Wang C K and Li Z L 2019 Phys. Lett. A 383 867
[21] Niu L L, Fu H Y, Suo Y Q, Liu R, Sun F, Wang S S, Zhang G P, Wang C K and Li Z L 2021 Physica E 128 114542
[22] Li H X, Su T A, Zhang V, SteigerwaldML, Nuckolls C and Venkataraman L 2015 J. Am. Chem. Soc. 137 5028
[23] Li H X, Garner M H, Shangguan Z C, Zheng Q W, Su T A, Neupane M, Li P P, Velian A, Steigerwald M L, Xiao S X, Nuckolls C, Solomon G C and Venkataraman L 2016 Chem. Sci. 7 5657
[24] Zhang G P, Mu Y Q, Zhao J M, Huang H, Hu G C, Li Z L and Wang C K 2019 Physica E 109 1
[25] Zheng C F, Mu Y Q, Li Z L and Zhang G P 2024 Chin. J. Chem. Phys. 37 644
[26] Zhang C Y, Kong Y Q, Xiang J J, Chen S K, Kornyshev A A, Ulstrup J, Gao X K, Zhang G P, Li Y Q and Li J H 2025 Chem. Sci. 16 1353
[27] Yi X H, Liu R, Bi J J, Jiao Y, Wang C K and Li Z L 2016 Chin. Phys. B 25 128503
[28] Li Z L, Bi J J, Liu R, Yi X H, Fu H Y, Sun F, Wei M Z and Wang C K 2017 Chin. Phys. B 26 098508
[29] Zhou M, Lu Y H, Cai Y Q, Zhang C and Feng Y P 2011 Nanotechnology 22 385502
[30] Yuan L, Wang L J, Garrigues A R, Jiang L, Annadata H V, Antonana M A, Barco E and Nijhuis C A 2018 Nat. Nanotechnol. 13 322
[31] Wang Z Q, Tang F, Dong M M, Wang M L, Hu G C, Leng J C, Wang C K and Zhang G P 2020 Chin. Phys. B 29 067202
[32] Bai J, Li X H, Zhu Z Y, Zheng Y and Hong W J 2021 Adv. Mater. 33 2005883
[33] Zhang G P, Sun Y Z, Shi N P, Yu C J, Kong Y Q, Huang H and Wang Z Q 2023 Chin. J. Chem. Phys. 36 707
[34] Xu B Q and Tao N J 2003 Science 301 1221
[35] Xu B Q, Xiao X Y and Tao N J 2003 J. Am. Chem. Soc. 125 16164
[36] Quek S Y, Kamenetska M, Steigerwald M L, Choi H J, Louie S G, Hybertsen M S, Neaton J B and Venkataraman L 2009 Nat. Nanotechnol. 4 230
[37] Suo Y Q, Liu R, Sun F, Niu L L, Wang S S, Liu L and Li Z L 2020 Acta Phys. Sin. 69 208502 (in Chinese)
[38] Kamenetska M, Quek S Y, Whalley A C, Steigerwald M L, Choi H J, Louie S G, Nuckolls C, Hybertsen M S, Neaton J B and Venkataraman L 2010 J. Am. Chem. Soc. 132 6817
[39] Hong W J, Manrique D Z, Moreno-García P, Gulcur M, Mishchenko A, Lambert C J, BryceMR andWandlowski T 2012 J. Am. Chem. Soc. 134 2292
[40] Aradhya S V, Frei M, Hybertsen M S and Venkataraman L 2012 Nat. Mater. 11 872
[41] Kim T, Darancet P, Widawsky J R, Kotiuga M, Quek S Y, Neaton J B and Venkataraman L 2014 Nano Lett. 14 794
[42] Mezei G, Balogh Z, Magyarkuti A and Halbritter A 2020 J. Phys. Chem. Lett. 11 8053
[43] Magyarkuti A, Balogh Z, Mezei G and Halbritter A 2021 J. Phys. Chem. Lett. 12 1759
[44] Sun F, Liu L, Zheng C F, Li Y C, Yan Y, Fu X X,Wang C K, Liu R, Xu B Q and Li Z L 2023 Nanoscale 15 12586
[45] Liu L, Sun F, Li Y C, Yan Y, Liu B X, Yang Z, Qiu S and Li Z L 2023 Acta Phys. Sin. 72 048504 (in Chinese)
[46] Ismael A K, Wang K, Vezzoli A, Al-Khaykanee M K, Gallagher H E, Grace I M, Lambert C J, Xu B Q, Nichols R J and Higgins S J 2017 Angew. Chem. Int. Ed. 56 15378
[47] Li Z L, Zhang G P and Wang C K 2011 J. Phys. Chem. C 115 15586
[48] Zhao Z K, Liu R, Mayer D, Coppola M, Sun L, Kim Y, Wang C K, Ni L F, Chen X, Wang M N, Li Z L, Lee T and Xiang D 2018 Small 14 1703815
[49] Zhao X Y, Yan Y, Tan M, Zhang S R, Xu X N, Zhao Z B, Wang M N, Zhang X B, Adijiang A, Li Z L, Scheer E and Xiang D 2024 SmartMat 5 e1280
[50] Frisch M J, Trucks GW, Schlegel H B, et al. 2016 Gaussian 16 Rev. A. 03 (Wallingford, CT)
[51] Liu R, Wang C K and Li Z L 2016 Sci. Rep. 6 21946
[52] Shankar R 1994 Principles of Quantum Mechanics, 2nd Edn. (New York: Plenum Press) pp. 164–175
[1] Anisotropic spin transport and photoresponse characteristics detected by tip movement in magnetic single-molecule junction
Deng-Hui Chen(陈登辉), Zhi Yang(羊志), Xin-Yu Fu(付新宇), Shen-Ao Qin(秦申奥), Yan Yan(严岩), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2024, 33(4): 047201.
[2] Current spin polarization of a platform molecule with compression effect
Zhi Yang(羊志), Feng Sun(孙峰), Deng-Hui Chen(陈登辉), Zi-Qun Wang(王子群), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2022, 31(7): 077202.
[3] Theoretical design of single-molecule NOR and XNOR logic gates by using transition metal dibenzotetraaza[14]annulenes
Zi-Qun Wang(王子群), Fei Tang(唐菲), Mi-Mi Dong(董密密), Ming-Lang Wang(王明郎), Gui-Chao Hu(胡贵超), Jian-Cai Leng(冷建材), Chuan-Kui Wang(王传奎), Guang-Ping Zhang(张广平). Chin. Phys. B, 2020, 29(6): 067202.
No Suggested Reading articles found!