|
Special Issue:
SPECIAL TOPIC — Artificial intelligence and smart materials innovation: From fundamentals to applications
|
| SPECIAL TOPIC — Artificial intelligence and smart materials innovation: From fundamentals to applications |
Prev
Next
|
|
|
Strain modulation of second harmonic generation in new tetrahedral transition metal dichalcogenide monolayers |
| Hu Chen(陈虎)1,3, Shi-Qi Li(李仕琪)1,3,†, Yuqing Wu(吴雨晴)1,3, Xiaozhendong Bao(鲍晓振东)1,3, Zhijie Lei(雷志杰)1,3, Hongsheng Liu(柳洪盛)2, Yuee Xie(谢月娥)1,3,‡, Junfeng Gao(高峻峰)2,§, Yuanping Chen(陈元平)1,3, and Xiaohong Yan(颜晓红)1,3 |
1 School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China; 2 Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024, China; 3 Quantum Sensing and Agricultural Intelligence Detection Engineering Center of Jiangsu Province, Zhenjiang 212013, China |
|
|
|
|
Abstract Designing novel two-dimensional structures and precisely modulating their second harmonic generation (SHG) attributes are key to advancing nonlinear photonic technologies. In this work, through first-principles calculations, we propose a novel tetrahedral phase of transition metal dichalcogenides (TMDs) and validate its structural feasibility in a family of compounds, i.e., $ZX_2$ ($Z = {\rm Ti}$, Zr, Hf; $X ={\rm S}$, Se, Te). Cohesive energy and phonon dispersion calculations further demonstrate that eight of nine possible $ZX_2$ monolayers are dynamically stable. All the $ZX_2$ monolayers exhibit pronounced out-of-plane SHG with nonlinear susceptibility components reaching the order of 10$^2$ pm/V. Strain engineering imposes a profound influence on the SHG response of $ZX_2$ monolayers by reducing symmetry and modifying nonlinear susceptibility components. The redshift and significant enhancement of the prominent peak in SHG spectra are also revealed due to strain-induced charge redistribution and band gap reduction. Intriguingly, strain-driven nonlinear optical switching effects are realized in the $ZX_2$ monolayers, with a reversible switching of SHG component ordering under tensile and compressive strain. In such a case, the anisotropic SHG pattern transforms from fourfold to twofold symmetry under the strain. Our work demonstrates the efficacy of strain engineering in precisely enhancing SHG, paving the way for the integration of novel TMD structures into tunable and flexible nonlinear optical devices.
|
Received: 26 March 2025
Revised: 16 May 2025
Accepted manuscript online: 20 May 2025
|
|
PACS:
|
42.65.-k
|
(Nonlinear optics)
|
| |
42.65.An
|
(Optical susceptibility, hyperpolarizability)
|
| |
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
| |
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
| Fund: This work is supported by the National Natural Science Foundation of China (Grant Nos. 12304220, 12174157, 12074150, and 12374174), the Natural Science Foundation of Jiangsu Province (Grant No. BK20230518), the China Postdoctoral Science Foundation (Grant No. 2023M731383), the College Student Innovation Project (Grant No. 202410299946X), and the Scientific Research Project of Jiangsu University (Grant No. 22A397). |
Corresponding Authors:
Shi-Qi Li, Yuee Xie, Junfeng Gao
E-mail: shiqili@ujs.edu.cn;yueex@ujs.edu.cn;gaojf@dlut.edu.cn
|
Cite this article:
Hu Chen(陈虎), Shi-Qi Li(李仕琪), Yuqing Wu(吴雨晴), Xiaozhendong Bao(鲍晓振东), Zhijie Lei(雷志杰), Hongsheng Liu(柳洪盛), Yuee Xie(谢月娥), Junfeng Gao(高峻峰), Yuanping Chen(陈元平), and Xiaohong Yan(颜晓红) Strain modulation of second harmonic generation in new tetrahedral transition metal dichalcogenide monolayers 2025 Chin. Phys. B 34 084206
|
[1] Boyd RW, Gaeta A L and Giese E 2008 Springer Handbook of Atomic, Molecular, and Optical Physics (New York, Springer) pp. 1097–1110 [2] Shen Y R 1984 Principles of Nonlinear Optics (New York, Wiley- Interscience) [3] Autere A, Jussila H, Dai Y, Wang Y, Lipsanen H and Sun Z 2018 Adv. Mater. 30 1705963 [4] Huang W, Xiao Y, Xia F, Chen X and Zhai T 2024 Adv. Funct. Mater. 34 2310726 [5] Khan A R, Zhang L, Ishfaq K, Ikram A, Yildrim T, Liu B, Rahman S and Lu Y 2021 Adv. Funct. Mater. 32 2105259 [6] Keller U 2003 Nature 424 831 [7] Chang D E, Vuletić V and Lukin M D 2014 Nat. Photonics 8 685 [8] Elshaari A W, Büyüközer E, Zadeh I E, Lettner T, Zhao P, Schöll E, Gyger S, Reimer M E, Dalacu D and Poole P J 2018 Nano Lett. 18 7969 [9] Nabet B 2023 Photodetectors: Materials, Devices and Applications (Cambridge, Woodhead Publishing) [10] Samanta G, Fayaz G, Sun Z and Ebrahim-Zadeh M 2007 Opt. Lett. 32 400 [11] Bo Y, Geng A, Bi Y, Sun Z, Yang X, Peng Q, Li H, Li R, Cui D and Xu Z 2006 Appl. Opt. 45 2499 [12] Asadipour B, Beaurepaire E, Zhang X, Chessel A, Mahou P, Supatto W, Schanne-Klein M C and Stringari C 2024 Biophys. J. 123 463 [13] Watanabe T M, Maeda Y, Shioi G, Miyazaki K and Fujita H 2025 J. Food Eng. 391 112422 [14] Brüggemann D A, Brewer J, Risbo J and Bagatolli L 2010 Food Biophys. 5 1 [15] Sun Y, Zhai X, Xu Y, Liu C, Zou X, Li Z, Shi J and Huang X 2021 Food Control 122 107772 [16] Zhai W, You T, Ouyang X and Wang M 2021 Compr. Rev. Food Sci. Food Saf. 20 1887 [17] Chen Z, Sun Y, Shi J, Zhang W, Zhang X, Huang X, Zou X, Li Z and Wei R 2022 Food Chem. 370 131276 [18] Zhu J, Agyekum A A, Kutsanedzie F Y, Li H, Chen Q, Ouyang Q and Jiang H 2018 Lwt 97 760 [19] Zhu J, Jiang X, Rong Y, Wei W, Wu S, Jiao T and Chen Q 2023 Food Chem. 414 135705 [20] Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photonics 4 611 [21] Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F and Zhang X 2011 Nature 474 64 [22] Ciattoni A, Marini A, Rizza C and Conti C 2018 Light Sci. Appl. 7 5 [23] Zhao M, Ye Z, Suzuki R, Ye Y, Zhu H, Xiao J, Wang Y, Iwasa Y and Zhang X 2016 Light Sci. Appl. 5 e16131 [24] Wang H and Qian X 2017 Nano Lett. 17 5027 [25] LI S Q, He C, Liu H, Zhao L, Xu X, Chen M,Wang L, Zhao J and Gao J 2022 Adv. Opt. Mater. 10 2200076 [26] Zhao B J, Zhao J L and Gan X T 2024 Chin. Phys. Lett. 41 104201 [27] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033 [28] Choi W, Choudhary N, Han G H, Park J, Akinwande D and Lee Y H 2017 Materials Today 20 116 [29] Strasser A, Wang H and Qian X 2022 Nano Lett. 22 4145 [30] Seyler K L, Schaibley J R, Gong P, Rivera P, Jones A M, Wu S, Yan J, Mandrus D G, Yao W and Xu X 2015 Nat. Nanotechnol. 10 407 [31] Voiry D, Mohite A and Chhowalla M 2015 Chem. Soc. Rev. 44 2702 [32] Fu Q, Han J, Wang X, Xu P, Yao T, Zhong J, Zhong W, Liu S, Gao T and Zhang Z 2021 Adv. Mater. 33 1907818 [33] Friedman A L, Hanbicki A T, Perkins F K, Jernigan G G, Culbertson J C and Campbell P M 2017 Sci. Rep. 7 3836 [34] Tan S J, Abdelwahab I, Ding Z, Zhao X, Yang T, Loke G Z, Lin H, Verzhbitskiy I, Poh S M and Xu H 2017 J. Am. Chem. Soc. 139 2504 [35] Ma X, Guo P, Yi C, Yu Q, Zhang A, Ji J, Tian Y, Jin F,Wang Y and Liu K 2016 Phys. Rev. B 94 214105 [36] He C, Zhao Q, Huang Y, Zhu L, Zhang S, Bai J and Xu X 2019 J. Phys. Chem. Lett. 10 2090 [37] Kumar N, Najmaei S, Cui Q, Ceballos F, Ajayan P M, Lou J and Zhao H 2013 Phys. Rev. B 87 161403 [38] Tedstone A A, Lewis D J and O’Brien P 2016 Chem. Mater. 28 1965 [39] Zhou X and Rodriguez E E 2017 Chem. Mater. 29 5737 [40] Zhang C P and Miao X Y 2023 Chin. Phys. Lett. 40 124201 [41] Qiao Y, Chen J, Zhou S, Chen J, Jiang S and Yang Y 2024 Chin. Phys. Lett. 41 014205 [42] Zhang A, Qiu S, Zhao L, Liu H, Zhao J and Gao J 2024 Laser Photonics Rev. 18 2300742 [43] An Y Q, Nelson F, Lee J U and Diebold A C 2013 Nano Lett. 13 2104 [44] He C, Wu R, Zhu L, Huang Y, Du W, Qi M, Zhou Y, Zhao Q and Xu X 2022 J. Phys. Chem. Lett. 13 352 [45] He C, Zhao Q, Huang Y, Du W, Zhu L, Zhou Y, Zhang S and Xu X 2020 Phys. Chem. Chem. Phys. 22 21428 [46] Mennel L, Furchi M M, Wachter S, Paur M, Polyushkin D K and Mueller T 2018 Nat. Commun. 9 516 [47] Liang J, Zhang J, Li Z, Hong H,Wang J, Zhang Z, Zhou X, Qiao R, Xu J and Gao P 2017 Nano Lett. 17 7539 [48] Kresse G and Furthmller J 1996 Comput. Mater. Sci. 6 15 [49] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [50] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [51] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993 [52] Blöchl P E 1994 Phys. Rev. B 50 17953 [53] Gonze X, Charlier J C, Allan D and Teter M 1994 Phys. Rev. B 50 13035 [54] Giannozzi P, De Gironcoli S, Pavone P and Baroni S 1991 Phys. Rev. B 43 7231 [55] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207 [56] Aversa C and Sipe J E 1995 Phys. Rev. B 52 14636 [57] Rashkeev S N, LambrechtWR and Segall B 1998 Phys. Rev. B 57 3905 [58] Sipe J and Ghahramani E 1993 Phys. Rev. B 48 11705 [59] Sharma S, Dewhurst J K and Ambrosch-Draxl C 2003 Phys. Rev. B 67 165332 [60] Levine Z H and Allan D C 1991 Phys. Rev. Lett. 66 41 [61] Sipe J and Shkrebtii A 2000 Phys. Rev. B 61 5337 [62] Grundmann M 2006 The physics of semiconductors Vol. 13 (New York: Springer) [63] Horzum S, Sahin H, Cahangirov S, Cudazzo P, Rubio A, Serin T and Peeters F 2013 Phys. Rev. B 87 125415 [64] Rahman S, Yildirim T, Tebyetekerwa M, Khan A R and Lu Y 2022 ACS Nano 16 13959 [65] Eckardt R C, Masuda H, Fan Y X and Byer R L 1990 IEEE J. Quantum Electron. 26 922 [66] Guo Z, Wang M, Barimah A O, Chen Q, Li H, Shi J, El-Seedi H R and Zou X 2021 Int. J. Food Microbiol. 338 108990 [67] Han F, Huang X and Mahunu G K 2017 Trends Food Sci. Technol. 59 37 [68] Xu Y, Hassan M M, Sharma A S, Li H and Chen Q 2023 Crit. Rev. Food Sci. Nutr. 63 486 [69] He C, Zhu L, Huang Y, Du W, Qi M, Zhou Y, Zhao Q and Xu X 2022 J. Phys. Chem. C 126 10584 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|