Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 084201    DOI: 10.1088/1674-1056/add1bb
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Dynamic and polarization-independent high-Q guided resonances in metasurfaces with phase change material

Guozhong Zhang(张国忠), Mimi Zhou(周秘密), Hong Xiang(向红)†, and Dezhuan Han(韩德专)‡
Department of Physics and Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 401331, China
Abstract  Using periodic refractive index perturbations, the Brillouin zone is folded, transforming the guided modes in a metasurface into guided resonances with arbitrarily high quality-factors. The incorporation of phase change materials within the metasurface enables dynamic modulation of the guided modes. The system's symmetry ensures a polarization-independent response under normal incidence. Furthermore, the metasurface exhibits excellent sensing performance, demonstrating its potential for advanced photonic applications.
Keywords:  Brillouin zone folding      phase change material      guided resonance      sensing  
Received:  12 February 2025      Revised:  22 April 2025      Accepted manuscript online:  29 April 2025
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.Ja (Polarization)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  78.20.N-  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12347101).
Corresponding Authors:  Hong Xiang, Dezhuan Han     E-mail:  xhong@cqu.edu.cn;dzhan@cqu.edu.cn

Cite this article: 

Guozhong Zhang(张国忠), Mimi Zhou(周秘密), Hong Xiang(向红), and Dezhuan Han(韩德专) Dynamic and polarization-independent high-Q guided resonances in metasurfaces with phase change material 2025 Chin. Phys. B 34 084201

[1] Overvig A C, Shrestha S and Yu N 2018 Nanophotonics 7 1157
[2] Liu C, Bai Y, Zhou J, Chen J and Qiao L 2021 Opt. Express 29 42978
[3] Shi W, Gu J, Zhang X, Xu Q, Han J, Yang Q, Cong L and Zhang W 2022 Photonics Research 10 810
[4] Fan S and Joannopoulos J D 2002 Phys. Rev. B 65 235112
[5] Yin X, Jin J, Soljačić M, Peng C and Zhen B 2020 Nature 580 467
[6] Jin J, Yin X, Ni L, Soljačić M, Zhen B and Peng C 2019 Nature 574 501
[7] Zhang Z, Qin F, Xu Y, Fu S, Wang Y and Qin Y 2021 Photonics Research 9 1592
[8] Liu Z, Xu Y, Lin Y, Xiang J, Feng T, Cao Q, Li J, Lan S and Liu J 2019 Phys. Rev. Lett. 123 253901
[9] Jia S, Li Y, Xue Z, Chen K, Li Z, Gong Q and Chen J 2023 Adv. Mater. 35 2212244
[10] Gao E, Jin R, Fu Z, Cao G, Deng Y, Chen J, Li G, Chen X and Li H 2023 Photonics Research 11 456
[11] Koshelev K, Lepeshov S, Liu M, Bogdanov A and Kivshar Y 2018 Phys. Rev. Lett. 121 193903
[12] Li S, Zhou C, Liu T and Xiao S 2019 Phys. Rev. A 100 063803
[13] Zeng B, Majumdar A and Wang F 2015 Opt. Express 23 12478
[14] Wang W, Srivastava Y K, Tan T C, Wang Z and Singh R 2023 Nat. Commun. 14 2811
[15] Chen Y, Liu Z, Li Y, Hu Z, Wu J and Wang J 2022 Opt. Express 30 23828
[16] Huang L, Jin R, Zhou C, Li G, Xu L, Overvig A, Deng F, Chen X, Lu W, Alù A and Miroshnichenko A E 2023 Nat. Commun. 14 3433
[17] Fan K, Shadrivov I V and Padilla W J 2019 Optica 6 169
[18] Han S, Cong L, Srivastava Y K, Qiang B, Rybin M V, Kumar A, Jain R, Lim W X, Achanta V G, Prabhu S S, Wang Q J, Kivshar Y S and Singh R 2019 Adv. Mater. 31 1901921
[19] Li J, Li J, Zheng C, Yue Z, Wang S, Li M, Zhao H, Zhang Y and Yao J 2021 Carbon 182 506
[20] Mikheeva E, Koshelev K, Choi D Y, Kruk S, Lumeau J, Abdeddaim R, Voznyuk I, Enoch S and Kivshar Y 2019 Opt. Express 27 33847
[21] Kwon H, Zheng T and Faraon A 2021 Nano Lett. 21 2817
[22] Dong W, Liu H, Behera J K, Lu L, Ng R J, Sreekanth K V, Zhou X, Yang J K and Simpson R E 2019 Adv. Funct. Mater. 29 1806181
[23] Zhou C, Qu X, Xiao S and Fan M 2020 Phys. Rev. Appl. 14 044009
[24] Zhang Y, Fowler C, Liang J, Azhar B, Shalaginov M Y, Deckoff-Jones S, An S, Chou J B, Roberts C M, Liberman V, Kang M, Ríos C, Richardson K A, Rivero-Baleine C, Gu T, Zhang H and Hu J 2021 Nat. Nanotechnol. 16 661
[25] Zhuo S, Li Y, Zhao A, Li Y R, Yao S, Zhang M, Feng T and Li Z 2023 Laser & Photon. Rev. 17 2200403
[26] Abdollahramezani S, Hemmatyar O, Taghinejad H, Krasnok A, Kiarashinejad Y, Zandehshahvar M, Alù A and Adibi A 2020 Nanophotonics 9 1189
[27] Tonkaev P, Sinev I S, Rybin M V, Makarov S V and Kivshar Y 2022 Chemical Reviews 122 15414
[28] Delaney M, Zeimpekis I, Lawson D, Hewak D W and Muskens O L 2020 Adv. Funct. Mater. 30 2002447
[29] Delaney M, Zeimpekis I, Du H, Yan X, Banakar M, Thomson D J, Hewak D W and Muskens O L 2021 Sci. Adv. 7 eabg350
[30] Palik E D 1985 Handbook of optical constants of solids (Orlando: Academic Press) pp. 547–569
[31] Abbas M A, Zubair A, Riaz K, Huang W, Teng J, Mehmood M Q and Zubair M 2020 Opt. Express 28 23509
[32] Overvig A C, Malek S C, Carter M J, Shrestha S and Yu N 2020 Phys. Rev. B 102 035434
[33] Bulgakov E N and Maksimov D N 2017 Phys. Rev. Lett. 118 267401
[34] Jin J, Yin X, Ni L, Soljačić M, Zhen B and Peng C 2019 Nature 574 501
[35] Kang M, Zhang S, Xiao M and Xu H 2021 Phys. Rev. Lett. 126 117402
[36] Yuan L and Lu Y Y 2018 Phys. Rev. A 97 043828
[37] Mackay A 1989 Electron. Lett. 25 1624
[38] Ndao A, Hsu L, Cai W, Ha J, Park J, Contractor R, Lo Y and Kanté B 2020 Nanophotonics 9 1081
[39] Su W, Chen X, Geng Z, Luo Y and Chen B 2020 Results in Physics 18 103340
[40] Hsiao H H, Hsu Y C, Liu, A Y, Hsieh J C and Lin Y H 2022 Adv. Opt. Mater. 10 2200812
[41] Watanabe K and Iwanaga M 2023 Nanophotonics 12 99
[42] Li H, Xing J, Shi Y, Yu S and Zhao T 2023 Opt. & Laser Technol. 157 108752
[1] Lasing and fluorescence of air plasma in presence of an external electric field
Kai-Lu Wang(王凯璐), Hai-Cheng Mei(梅海城), Liang Xu(许亮), and Yi Liu(刘一). Chin. Phys. B, 2025, 34(9): 093101.
[2] Corrigendum to “Multi-functional photonic spin Hall effect sensor controlled by phase transition”
Jie Cheng(程杰), Rui-Zhao Li(李瑞昭), Cheng Cheng(程骋), Ya-Lin Zhang(张亚林), Sheng-Li Liu(刘胜利), and Peng Dong(董鹏). Chin. Phys. B, 2025, 34(9): 099901.
[3] Quasi-two-dimensional isotropic laser cooling of atoms for quantum sensing
Xiao Zhang(张孝), Yi Song(宋屹), Yuan Sun(孙远), and Liang Liu(刘亮). Chin. Phys. B, 2025, 34(8): 084202.
[4] Polarization impact on sensitivity of Rydberg atom-based microwave sensors
Minghao Cai(蔡明皓), Aomao Wei(魏奥贸), Shanshan Chen(陈珊珊), and Yuming Huang(黄聿铭). Chin. Phys. B, 2025, 34(8): 083201.
[5] Giant-tunable bidirectional Goos-Hänchen shifts via phase change material-based metasurfaces with quasi-bound states in continuum
Jiaqing Liu(刘佳晴), Yue Zheng(郑悦), Xiao Li(李潇), Jingwen Li(李静文), Guohao Zhang(张国昊), Daxing Dong(董大兴), Dongmei Liu(刘冬梅), Yuwen Jia(贾玉雯), Yangyang Fu(伏洋洋), and Youwen Liu(刘友文). Chin. Phys. B, 2025, 34(7): 074208.
[6] Spin-based magnetic detection of optically trapped single cell in microfluidic channel
Jun Yin(殷俊), Sanyou Chen(陈三友), Yihao Yan(燕一皓), Mengqi Wang(王孟祺), Ya Wang(王亚), Yiheng Lin(林毅恒), Qi Zhang(张琪), and Fazhan Shi(石发展). Chin. Phys. B, 2025, 34(7): 070704.
[7] Phase-modulated dynamical decoupling sequences robust to systematic amplitude error
Sijie Chen(陈思婕), Guanxing Chen(陈官幸), Jiahao Huang(黄嘉豪), Peiliang Liu(刘培亮), Min Zhuang(庄敏), and Chaohong Lee(李朝红). Chin. Phys. B, 2025, 34(7): 074202.
[8] Symmetry-protected and Brillouin zone folding driven bound states in the continuum in dielectric nanorod arrays for efficient third harmonic generation
Wen-Jing Wang(王文静), Shi-Jie Liang(梁世杰), Jia-Qi Zou(邹家祺), Yan-Yan Huo(霍燕燕), and Ting-Yin Ning(宁廷银). Chin. Phys. B, 2025, 34(3): 034202.
[9] Design of a high sensitivity and wide range angular rate sensor based on exceptional surface
Xinsheng Ding(丁鑫圣), Wenyao Liu(刘文耀), Shixian Wang(王师贤), Yu Tao(陶煜), Yanru Zhou(周彦汝), Yu Bai(白禹), Lai Liu(刘来), Enbo Xing(邢恩博), Jun Tang(唐军), and Jun Liu(刘俊). Chin. Phys. B, 2024, 33(8): 084204.
[10] Multi-functional photonic spin Hall effect sensor controlled by phase transition
Jie Cheng(程杰), Rui-Zhao Li(李瑞昭), Cheng Cheng(程骋), Ya-Lin Zhang(张亚林), Sheng-Li Liu(刘胜利), and Peng Dong(董鹏). Chin. Phys. B, 2024, 33(7): 074203.
[11] Remote sensing image encryption algorithm based on novel hyperchaos and an elliptic curve cryptosystem
Jing-Xi Tian(田婧希), Song-Chang Jin(金松昌), Xiao-Qiang Zhang(张晓强), Shao-Wu Yang(杨绍武), and Dian-Xi Shi(史殿习). Chin. Phys. B, 2024, 33(5): 050502.
[12] Actively tuning anisotropic light—matter interaction in biaxial hyperbolic material α-MoO3 using phase change material VO2 and graphene
Kun Zhou(周昆), Yang Hu(胡杨), Biyuan Wu(吴必园), Xiaoxing Zhong(仲晓星), and Xiaohu Wu(吴小虎). Chin. Phys. B, 2024, 33(4): 047103.
[13] Dynamics analysis and cryptographic implementation of a fractional-order memristive cellular neural network model
Xinwei Zhou(周新卫), Donghua Jiang(蒋东华), Jean De Dieu Nkapkop, Musheer Ahmad, Jules Tagne Fossi, Nestor Tsafack, and Jianhua Wu(吴建华). Chin. Phys. B, 2024, 33(4): 040506.
[14] Enhanced measurement precision with continuous interrogation during dynamical decoupling
Jun Zhang(张军), Peng Du(杜鹏), Lei Jing(敬雷), Peng Xu(徐鹏), Li You(尤力), and Wenxian Zhang(张文献). Chin. Phys. B, 2024, 33(3): 030301.
[15] Fast compressed sensing spectral measurement with adaptive gradient multiscale resolution
Ruo-Ming Lan(蓝若明), Xue-Feng Liu(刘雪峰), Tian-Ping Li(李天平), and Cheng-Jie Bai(白成杰). Chin. Phys. B, 2024, 33(2): 020702.
No Suggested Reading articles found!