Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 084301    DOI: 10.1088/1674-1056/add4f3
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Stabilized adaptive waveform inversion for enhanced robustness in Gaussian penalty matrix parameterization and transcranial ultrasound imaging

Jun-Jie Zhao(赵俊杰)1,†, Shan-Mu Jin(金山木)2,†, Yue-Kun Wang(王月坤)2, Yu Wang(王裕)2,‡, and Ya-Hui Peng(彭亚辉)1,§
1 School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China;
2 Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
Abstract  Achieving high-resolution intracranial imaging in a safe and portable manner is critical for the diagnosis of intracranial diseases, preoperative planning of craniotomies and intraoperative management during craniotomy procedures. Adaptive waveform inversion (AWI), a variant of full waveform inversion (FWI), has shown potential in intracranial ultrasound imaging. However, the robustness of AWI is affected by the parameterization of the Gaussian penalty matrix and the challenges posed by transcranial scenarios. Conventional AWI struggles to produce accurate images in these cases, limiting its application in critical medical settings. To address these issues, we propose a stabilized adaptive waveform inversion (SAWI) method, which introduces a user-defined zero-lag position for the Wiener filter. Numerical experiments demonstrate that SAWI can achieve accurate imaging under Gaussian penalty matrix parameter settings where AWI fails, perform successful transcranial imaging in configurations where AWI cannot, and maintain the same imaging accuracy as AWI. The advantage of this method is that it achieves these advancements without modifying the AWI framework or increasing computational costs, which helps to promote the application of AWI in medical fields, particularly in transcranial scenarios.
Keywords:  ultrasound brain imaging      full waveform inversion      robustness      parameterization  
Received:  23 January 2025      Revised:  29 April 2025      Accepted manuscript online:  07 May 2025
PACS:  43.60.Lq (Acoustic imaging, displays, pattern recognition, feature extraction)  
  43.80.Qf (Medical diagnosis with acoustics)  
  43.35.Wa (Biological effects of ultrasound, ultrasonic tomography)  
  87.63.dh (Ultrasonographic imaging)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 82151302), the National High Level Hospital Clinical Research Funding (Grant No. 2022-PUMCH-B-113), the National High Level Hospital Clinical Research Funding (Grant No. 2022-PUMCH-A-019), and the CAMS Innovation Fund for Medical Sciences (Grant No. 2021-12M-1-014).
Corresponding Authors:  Yu Wang, Ya-Hui Peng     E-mail:  ywang@pumch.cn;yhpeng@bjtu.edu.cn

Cite this article: 

Jun-Jie Zhao(赵俊杰), Shan-Mu Jin(金山木), Yue-Kun Wang(王月坤), Yu Wang(王裕), and Ya-Hui Peng(彭亚辉) Stabilized adaptive waveform inversion for enhanced robustness in Gaussian penalty matrix parameterization and transcranial ultrasound imaging 2025 Chin. Phys. B 34 084301

[1] Ivanov M, Wilkins S, Poeata I and Brodbelt A 2010 Br. J. Neurosurg. 24 510
[2] Smith S W, Ivancevich N M, Lindsey B D, Whitman J, Light E, Fronheiser M, Nicoletto H A and Laskowitz D T 2009 Ultrasound Med. Biol. 35 329
[3] Guasch L, Calderón Agudo O, Tang M X, Nachev P and Warner M 2020 NPJ Digit. Med. 3 28
[4] Edlow B L, Mareyam A, Horn A, Polimeni J R, Witzel T, Tisdall M D, Augustinack J C, Stockmann J P, Diamond B R, Stevens A, Tirrell L S, Folkerth R D,Wald L L, Fischl B and van der Kouwe A 2019 Sci. Data 6 244
[5] Yanagawa M, Hata A, Honda O, Kikuchi N, Miyata T, Uranishi A, Tsukagoshi S and Tomiyama N 2018 Eur. Radiol. 28 5060
[6] Menikou G, Dadakova T, Pavlina M, Bock M and Damianou C 2015 Ultrasonics 57 144
[7] Chen T, Liu L, Ma X, Zhang Y, Liu H, Zheng R, Ren J, Zhou H, Ren Y, Gao R, Chen N, Zheng H, Song L and Liu C 2022 IEEE Trans. Biomed. Eng. 69 1093
[8] Emberson J, Lees K R, Lyden P, Blackwell L, Albers G, Bluhmki E, Brott T, Cohen G, Davis S, Donnan G, Grotta J, Howard G, Kaste M, Koga M, von Kummer R, Lansberg M, Lindley R I, Murray G, Olivot J M, Parsons M, Tilley B, Toni D, Toyoda K, Wahlgren N, Wardlaw J, Whiteley W, del Zoppo G J and Baigent C 2014 Lancet 384 1929
[9] Lauzier P T and Chen G H 2013 Med. Phys. 40 021902
[10] Comeau R M, Sadikot A F, Fenster A and Peters T M 2000 Med. Phys. 27 787
[11] Letteboer M M, Willems P W, Viergever M A and Niessen W J 2005 IEEE Trans. Biomed. Eng. 52 268
[12] Maurer C R Jr, Hill D L, Martin A J, Liu H, McCue M, Rueckert D, Lloret D, Hall W A, Maxwell R E, Hawkes D J and Truwit C L 1998 IEEE Trans. Med. Imaging 17 817
[13] Nimsky C, Ganslandt O, Cerny S, Hastreiter P, Greiner G and Fahlbusch R 2000 Neurosurgery 47 1070
[14] Guasch L, Warner M and Ravaut C 2019 Geophysics 84 R447
[15] Ren J, Li J, Chen S, Liu Y and Ta D 2025 Ultrasonics 145 107465
[16] Wiskin JW, Borup D T, Iuanow E, Klock J and Lenox M W 2017 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64 1161
[17] Sandhu G Y, Li C, Roy O, Schmidt S and Duric N 2015 Phys. Med. Biol. 60 5381
[18] Wiskin J, Malik B, Borup D, Pirshafiey N and Klock J 2020 Sci. Rep. 10 20166
[19] Li Y B, Wang J, Su C, Lin W J, Wang X M and Luo Y 2023 Chin. Phys. B 32 014303
[20] Bunks C, Saleck F M, Zaleski S and Chavent G 1995 Geophysics 60 1457
[21] Jiang C, Li B, Xie L, Liu C, Xu K, Zhan Y and Ta D 2023 Ultrasonics 135 107124
[22] Ren J, Wang X, Liu C, Sun H, Tong J, Lin M, Li J, Liang L, Yin F, Xie M and Liu Y 2023 Sensors 23 8341
[23] Robins T, Camacho J, Agudo O C, Herraiz J L and Guasch L 2021 Sensors 21 4570
[24] Yao J 2019 Adaptive Waveform Inversion: Algebraic Interpretation, Convergence Analysis and Alternative Formulations (PhD Thesis) (London: Imperial College London)
[25] Pladys A, Brossier R, Li Y and Métivier L 2021 Geophysics 86 R563
[26] Chen W, Tao C, Hu Z, Yuan S, Liu Q and Liu X 2022 Chin. Phys. B 31 044304
[27] Warner M and Guasch L 2016 Geophysics 81 R429
[28] Courant R, Friedrichs K and Lewy H 1967 IBM J. Res. Dev. 11 215
[29] Iacono M I, Neufeld E, Akinnagbe E, Bower K, Wolf J, Vogiatzis Oikonomidis I, Sharma D, Lloyd B,Wilm B J,Wyss M, Pruessmann K P, Jakab A, Makris N, Cohen E D, Kuster N, Kainz W and Angelone L M 2015 PLoS One 10 e0124126
[30] Cueto C, Bates O, Strong G, Cudeiro J, Luporini F, Calderoń Agudo O, Gorman G, Guasch L and Tang M X 2022 Comput. Methods Programs Biomed. 240 107710
[31] Eaid M, Keating S and Innanen K https://www.crewes.org/Documents/ResearchReports/2018/CRR201809.pdf
[32] Li Y, Shi Q, Li Y, Song X, Liu C, Ta D and Wang W 2021 Chin. Phys. B 30 014302
[1] Sobolev space norm regularized full waveform inversion for ultrasound computed tomography
Panpan Li(李盼盼), Yubing Li(李玉冰), Chang Su(苏畅), Zeyuan Dong(董则元), and Weijun Lin(林伟军). Chin. Phys. B, 2025, 34(5): 054301.
[2] Robust optical mode converter based on topological waveguide arrays
Yu-Xiang Xu(徐宇翔), Wen-Jian Tang(唐文剑), Li-Wei Jiang(姜力炜), De-Xing Wu(吴德兴), Heng Wang(王恒), Bing-Cong Xu(许冰聪), and Lin Chen(陈林). Chin. Phys. B, 2024, 33(6): 060306.
[3] Percolation transitions in edge-coupled interdependent networks with directed dependency links
Yan-Li Gao(高彦丽), Hai-Bo Yu(于海波), Jie Zhou(周杰), Yin-Zuo Zhou(周银座), and Shi-Ming Chen(陈世明). Chin. Phys. B, 2023, 32(9): 098902.
[4] Robustness of community networks against cascading failures with heterogeneous redistribution strategies
Bo Song(宋波), Hui-Ming Wu(吴惠明), Yu-Rong Song(宋玉蓉), Guo-Ping Jiang(蒋国平),Ling-Ling Xia(夏玲玲), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(9): 098905.
[5] Doping-enhanced robustness of anomaly-related magnetoresistance in WTe2±α flakes
Jianchao Meng(孟建超), Xinxiang Chen(陈鑫祥), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Weimin Jiang(姜伟民), Zitao Zhang(张子涛), Changmin Xiong(熊昌民), Ruifen Dou(窦瑞芬), and Jiacai Nie(聂家财). Chin. Phys. B, 2023, 32(4): 047502.
[6] Research on the model of high robustness computational optical imaging system
Yun Su(苏云), Teli Xi(席特立), and Xiaopeng Shao(邵晓鹏). Chin. Phys. B, 2023, 32(2): 024202.
[7] Effect of short-term plasticity on working memory
Fan Yang(杨帆) and Feng Liu(刘锋). Chin. Phys. B, 2023, 32(11): 118706.
[8] Quantitative ultrasound brain imaging with multiscale deconvolutional waveform inversion
Yu-Bing Li(李玉冰), Jian Wang(王建), Chang Su(苏畅), Wei-Jun Lin(林伟军), Xiu-Ming Wang(王秀明), and Yi Luo(骆毅). Chin. Phys. B, 2023, 32(1): 014303.
[9] Robustness measurement of scale-free networks based on motif entropy
Yun-Yun Yang(杨云云), Biao Feng(冯彪), Liao Zhang(张辽), Shu-Hong Xue(薛舒红), Xin-Lin Xie(谢新林), and Jian-Rong Wang(王建荣). Chin. Phys. B, 2022, 31(8): 080201.
[10] High-fidelity resonant tunneling passage in three-waveguide system
Rui-Qiong Ma(马瑞琼), Jian Shi(时坚), Lin Liu(刘琳), Meng Liang(梁猛), Zuo-Liang Duan(段作梁), Wei Gao(高伟), and Jun Dong(董军). Chin. Phys. B, 2022, 31(2): 024202.
[11] Design and investigation of novel ultra-high-voltage junction field-effect transistor embedded with NPN
Xi-Kun Feng(冯希昆), Xiao-Feng Gu(顾晓峰), Qin-Ling Ma(马琴玲), Yan-Ni Yang(杨燕妮), and Hai-Lian Liang(梁海莲). Chin. Phys. B, 2021, 30(7): 078502.
[12] Dynamical robustness of networks based on betweenness against multi-node attack
Zi-Wei Yuan(袁紫薇), Chang-Chun Lv(吕长春), Shu-Bin Si(司书宾), and Dong-Li Duan(段东立). Chin. Phys. B, 2021, 30(5): 050501.
[13] Improving robustness of complex networks by a new capacity allocation strategy
Jun Liu(刘军). Chin. Phys. B, 2021, 30(1): 016401.
[14] Robustness self-testing of states and measurements in the prepare-and-measure scenario with 3→1 random access code
Shi-Hui Wei(魏士慧), Fen-Zhuo Guo(郭奋卓), Xin-Hui Li(李新慧), Qiao-Yan Wen(温巧燕). Chin. Phys. B, 2019, 28(7): 070304.
[15] Boundary states for entanglement robustness under dephasing and bit flip channels
Hong-Mei Li(李红梅), Miao-Di Guo(郭苗迪), Rui Zhang(张锐), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2019, 28(10): 100302.
No Suggested Reading articles found!